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Abstract

Recent literature has proposed employing a single experimental design capable of

preforming both factor screening and response surface estimation when conducting

sequential experiments is unrealistic due to time, budget, or other constraints. Mil-

itary systems, particularly aerodynamic systems, are complex. It is not unusual for

these systems to exhibit nonlinear response behavior. Developmental testing may be

tasked to characterize the nonlinear behavior of such systems while being restricted

in how much testing can be accomplished. Second-order screening designs provide a

means in a single design experiment to effectively focus test resources onto those fac-

tors driving system performance. Sponsored by the Office of the Secretary of Defense

(OSD) in support of the Science of Test initiative, this research characterizes and

adds to the area of second-order screening designs, particularly as applied to defense

testing. Existing design methods are empirically tested and examined for robustness.

The leading design method, a method that is very run efficient, is extended to over-

come limitations when screening for non-linear effects. A case study and screening

design guidance for defense testers is also provided.
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A COMPARISON STUDY OF SECOND-ORDER SCREENING DESIGNS AND

THEIR EXTENSION

I. Introduction

1.1 Background

Shrinking budgets, in conjunction with the rising costs associated with replacing

aging military hardware, have highlighted the necessity for Department of Defense

(DOD) organizations to demonstrate fiscal responsibility while still maintaining core

capabilities. As a result, the DOD continues to look for methods which promote effi-

ciencies in all its operations. As such in April 2012, the Scientific Test and Analysis

Techniques in Test & Evaluation Center of Excellence (STAT T&E COE) was estab-

lished at the Air Force Institute of Technology Graduate School of Engineering and

Management by the Deputy Assistant Secretary of Defense for Developmental Test

and Evaluation and Director, Air Force Test and Evaluation. Dr. Steven Hutchison,

Principal Deputy, Office of the Deputy Assistant Secretary of Defense for Develop-

mental Test and Evaluation (DASD(DT&E)), stated “By applying scientific methods

to the test design, we can not only achieve great efficiencies, but we can significantly

improve confidence in our results. The STAT T&E COE will provide a critical venue

for enhancing the test design for DOD acquisition programs.”

Prior to the establishment of the STAT T&E COE, Dr. J. Michael Gilmore,

Director of Operational Test and Evaluation (DOT&E), started an “initiative to in-

crease the use of scientific and statistical methods in developing rigorous, defensible

test plans and in evaluating their results” within OT&E (Gilmore, 2010). In a 2010

1



memorandum, Dr. Gilmore provided key policy guidance on the use of Design of Ex-

periments (DOE) in OT&E. Furthermore the DOT&E Scientific Advisor (SA), Dr.

Catherine Warner, highlighted the fact that while DOE is a structured, rigourous sta-

tistical tool for test planning and analysis, and it has been written about extensively

within the academic setting, there are still many questions regarding how to apply

DOE to T&E within DOD (Warner, 2011).

An ongoing effort, beginning in 2009, which focuses on transitioning basic science

of test techniques and test methodology to DOD practice is the “Science of Test” ini-

tiative. Funded by OSD DOT&E in 2011, the member institutes which comprise this

research consortium are Arizona State University, Virginia Tech, Naval Postgraduate

School, and the AFIT Center of Operational Analysis.

This dissertation directly supports the “Science of Test” initiative. In particular,

this research addresses the use of design of experiments and response surface designs

to characterize the area of second-order screening designs, particularly as applied to

defense testing. Extensions to existing designs are examined with respect to improve-

ments in robustness and applicability to defense testing.

1.2 Problem Context

Response surface methodolgoy (RSM) is a collection of statistical design and nu-

merical optimization techniques used to model a surface as an approximation for

the relationship between a process or system response and its input factors (Myers

and Anderson-Cook, 2009). The shape of the estimated surface is determined by the

model selected to approximate the system and the response values recorded from vari-

ous input factor settings. The assumption is that a response η is an unknown function

of a set of design variables x1, x2, ..., xk and that the function can be approximated

by a polynomial model. Prominent among the models considered are the first-order

2



model

η = β0 + β1x1 + ...+ βkxk (1.1)

and the second-order model

η = β0 +
k∑

i=1

βixi +
k∑

i=1

βiix
2
i +

k−1∑

i=1

k∑

j=i+1

βijxixj (1.2)

Box and Wilson (1951) laid the foundation for RSM by outlining a philosophy

of sequential experimentation which included experiments for screening, region seek-

ing (such as steepest ascent), process/product characterization, and process/product

optimization (Myers et al., 2004). Box and Liu (1999) illustrated a number of con-

cepts which Box understood as the embodiment of RSM at the time to include the

philosophy of sequential learning.

As such, the standard RSM approach is to use a three-stage process; however,

there are times when the sequential nature can be a disadvantage, especially when

the duration of an experiment is long or experimental preparation is time-consuming.

In these instances, it would be better, if not necessary, to perform factor screening

and response surface exploration on the same experiment vice conducting experiments

sequentially.

1.3 Problem Statement

Military systems, particularly aerodynamic systems, are complex. It is not unusual

for these systems to exhibit nonlinear behavior. Developmental testing may be tasked

to characterize the nonlinear behavior of such systems but may also be restricted in

how much testing can be accomplished. Second-order screening designs for nonlinear

system responses provide a means to effectively focus test resources onto those factors

driving system performance.

3



Second-order screening design methodology, sometimes referred to as One-Step

Response Surface Methodology or Definitive Screening, is a relatively new focus in

statistical research and effectively unknown to the defense test community. Important

questions as to the method’s usefulness and applicability remain unaddressed and so

are examined in this research.

1.4 Research Objective and Scope

This research will characterize and add to the area of second-order screening de-

signs, particularly as applied to defense testing. Existing design methods are tested

and examined for robustness. Extensions to existing designs are examined with re-

spect to improvements in robustness and applicability to defense testing.

We proceed with the following goals:

1. Conduct an empirical study to characterize and better understand new proposed

second-order screening designs.

2. Identify second-order screening design with favorable design parameter proper-

ties either through augmentation of existing designs or through creation of new

designs.

3. Development of guidelines for use of second-order screening designs for DOD

tests.

By accomplishing these research goals, we can help make test managers within

the DOD comfortable with implementing DOE techniques capable of examining the

complex nature of military systems within fiscal, time, and resource constraints.

4



1.5 Overview

The remainder of this dissertation follows a scholarly article format. Chapter

II contains a detailed literature review of screening and response surface designs,

partitioned by sequential and single phase methods for fitting first order and second-

order response surfaces. Chapters III, IV, and V are self-contained research articles

on second-order screening designs. Each contains a literature review of the research

relevant to that chapter. The original contribution of each chapter is as follows:

Chapter III formally examines the robustness of the two arguably best second-

order screening designs with respect to the assumptions of both sparsity (factor or

effect) and heredity (strong or weak). To date, evaluation of screening design per-

formance has assumed both factor sparsity and strong effect heredity. The article is

currently under review for publication in Quality and Reliability Engineering Inter-

national.

Chapter IV describes a computer generated D−optimality design augmentation

technique which uses a k−factor Definitive Screening Design (DSD) as a baseline

fixed design and augments the design with k − 1 additional runs. In a simulation

study, the proposed augmented Definitive Screening Designs (DSD+) were able to

increase the robustness of the original DSD to the principles of heredity and sparsity

while also increasing the detection rate of second-order effects when both two-factor

interactions and pure-quadratic effects are active. The article is currently under

review for publication in the Journal of Quality Technology.

Chapter V presents the use of design of experiments and response surface de-

signs in the area of second-order screening designs, particularly as applied to defense

testing, through demonstrating the viable use of second-order screening designs in a

wind tunnel case study. The article is currently targeted for publication in Military

Operations Research or the Journal of Defense Modeling and Simulation.
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And lastly, Chapter VI reiterates the importance of studying second-order screen-

ing designs, summarizes all original research contributions, and provides suggestions

for future work.
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II. Literature Review

This chapter covers the literature pertinent to this research effort. After a brief

synopsis of Design of Experiments (DOE) and Response Surface Methodology (RSM),

including common designs and terminology, the focus of the chapter shifts to rele-

vant literature on second-order screening designs. Research on second-order screening

designs falls into two broad categories; construction and design assessment/analysis

methods. Both areas are extensively reviewed with gaps and limitations being dis-

cussed.

2.1 Design of Experiments (DOE)

DOE, or experimental design, is a statistical technique used to organize an exper-

imental test or series of tests so that observed changes in an output response can be

attributed to systematic changes made to the input variables of a process or system

(Montgomery, 2013). While the designs are based upon statistical techniques, the

actual design forms vary greatly dependent upon the experimental objective. For

instance, the objectives of screening, modeling, or optimizing a process or system can

result in vastly different designs.

Design selection also depends upon the form of the empirical model used to rep-

resent the process or system response. Typically, first-order polynomial models are

used extensively in screening experiments while second-order polynomial models are

commonly used in modeling and optimization experiments. Inherent within the de-

signs and execution are data collection plans enabling the application of subsequent

statistical analysis methods to reach valid and objective conclusions.
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For the case of two independent factors, the first-order polynomial or main

effects model is

y = β0 + β1A+ β2B + ε (2.1)

where y is the response, A and B are the design factors, the βs are unknown estimable

parameters, and ε is a random error term accounting for the experimental error in

the system. An interaction term is usually added to the first-order model yielding

y = β0 + β1A+ β2B + β12AB + ε (2.2)

where the β12 represents the two-factor interaction effect between the design factors

A and B. The second-order polynomial model with two factors is

y = β0 + β1A+ β2B + β12AB + β11A
2 + β22B

2 + ε. (2.3)

Second-order models are often used for response surface exploration (Montgomery,

2013). More general forms are given in Equations 1.1 and 1.2.

2.1.1 Screening Designs.

Many experiments may start by considering many factors, which in turn increases

the overall size and cost of the experiment. Screening designs are a category of

experimental designs, usually performed during the early stages of a process or system

study, used to determine which of the many factors (if any) have a significant effect

on the system or process. Screening designs usually assume a linear (main effects or

main effects plus interaction) response function so factors can be studied at two levels

and thereby conserving experimental resources.

Popular experimental designs used in screening experiments are full and fractional

2-level factorial designs, Plackett-Burman, and supersaturated designs. While all of
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these designs are capable of identifying the main effects, only the full factorial design

is capable of identifying all interactions. To a varying degree, the remaining designs

are capable of identifying some or all two-factor interaction effects.

2.1.2 Response Surface Designs (RSD).

Response surface designs are experimental designs used when the response surface

is believed to possess significant curvature. In order to estimate curvature, each factor

needs at least three levels. Response surface designs fulfill this requirement through

augmentation of two-level regular designs or by specifying designs robust to the linear

effect assumption. Response surface designs are called second-order designs because

all (k + 1)(k + 2)/2 parameters in Equation 1.2 are estimable in the design.

A 3k or 3k−p fractional factorial design is often suggested to deal with response cur-

vature. However, more efficient options are available including the Central Composite

Design (CCD), Box-Behnken Design (BBD), and saturated/near-saturated Hoke, Hy-

brid, and Small Composite Designs (SCD).

2.1.2.1 Response Surface Methodology (RSM).

Since Box and Wilson (1951) laid the foundations for RSM, four comprehensive

historical reviews have been written. Hill and Hunter (1966) provided a comprehen-

sive bibliography while focusing on the practical applications of RSM in the fields of

chemistry and chemical engineering. The Mead and Pike (1975) review focused on

RSM as it applied to the modeling of biological data in the field of biometrics. Myers

et al. (1989) reviewed important developments in RSM during the 1970s and 1980s

while clearly defining RSM as “being confined to that of a collection of tools in design

or data analysis that enhance the exploration of a region of design variables in one or

more responses” (Myers et al., 1989).
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Myers et al. (2004) provide the most current comprehensive review of RSM through

discussions on advancements in robust parameter design and new developments in re-

sponse surface design to include methods for evaluating response surface designs.

Additionally, Myers et al. (2004) address both design and optimization issues for

multiple responses and the application of generalized linear models.

Unfortunately, the nature of DOE and RSM sometimes makes it difficult to dif-

ferentiate or draw a clear distinction between the two. Whereas DOE is comprised

of RSDs used for response surface models which include quadratic terms for curva-

ture, RSM employs DOE screening designs. As the RSM name implies, RSM is best

viewed in context as a methodology which employs DOE elements with the goal of

determining how changes in design variables can provide process improvement or op-

timization. As such, the standard RSM can be described as consisting of two stages:

factor screening and response surface exploration.

Traditionally, the research for factor screening and for response surface exploration

proceed not in concert but along separate avenues. The former involves concepts

like design resolution, minimum aberration, power, and the number of clear (non-

confounded) effects, and the latter involves the concepts like rotatability, alphabetical-

optimality, and prediction variance.

2.1.3 Design Resolution.

Resolution is a measure of the degree of confounding for main effects and inter-

actions in a fractional factorial design. Resolution is generally denoted in Roman

numerals. The smallest useful resolution is III, and a design can technically have res-

olutions has high as k + 1. Designs of resolution III, IV, and V are most prevalently

used because of the nature of confounding found within the designs. The confounding

characteristics of these design resolutions are:
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• Res III: Main effects clear of other main effects, at least one main effect is

confounded with at least one two-way interaction.

• Res IV: Main effects are clear of two-way interactions, but at least one two-way

interaction is confounded with at least one other two-way interaction.

• Res V: Main effects and two-way interaction are clear of any other main effect

or two-way interaction, but at least one two-way interaction is confounded with

at least one three-way interaction.

As an example, a design which confounds a variable A with a two-way interaction BC

would at best be a resolution III design where A and BC are correlated or aliased,

and therefore their effects cannnot be independently quantified. Usually the design

that has the highest resolution possible, while meeting the required fractionation for

design run size consideration, is employed.

There are times however that different designs can possess the same resolution and

fractionation but have different confounding or aliasing structure. Fries and Hunter

(1980) proposed the concept of design aberration for regular two-level designs as a

means to differentiate between these designs. They defined a minimum aberration

design as the design of maximum resolution R “which minimizes the number of words

in the defining relation that are of minimum length”. Since Fries and Hunter’s initial

work, the concept of minimum aberration criterion has been extended to two-level

non-regular, multilevel, and mixed-level fractional-factorial designs (Guo et al., 2009).

2.1.4 Optimality Criteria.

Optimal designs are typically assessed based upon specific criteria like providing

good estimation of model parameters or good prediction capacity within the design re-

gion. Alphabetic-optimality refers to the family of design optimality criteria that are
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characterized by a letter of the alphabet, currently A−, D−, G−, V−, or I−. These

alphabetical-optimality criteria drive what constitutes an optimal design. These opti-

mal designs are rather focused on a particular design characteristic. Two of the most

popular methods of characterizing optimality are I− and D−optimality.

D−optimality is based upon the notion of selecting design runs which maximize

the determinant of X′X, denoted as |X′X|, where X is the model matrix consisting

of the levels of the design matrix D expanded to model form. By selecting design

runs which maximize |X′X| or minimize |(X′X)−1|, D−optimal designs minimize the

volume of the joint confidence region on the vector of the model regression coefficients

β̂. Hence D−optimal designs focus on producing designs which provide good model

parameter estimates.

A−optimality focuses on producing good model parameter estimates by minimiz-

ing the trace of X′X−1, denoted tr(X′X)−1. In contrast to D−optimal designs which

consider the covariances among coefficients through examining |X′X|, A−optimal de-

signs deal with only the diagonals of (X′X)−1, which are related to the individual

variances of the regression coefficients (Montgomery, 2013).

While D− and A−optimal designs focus on good model parameter estimates,

G−, V−, and I−optimal designs focus on good prediction capacity within the design

region by focusing on the scaled prediction variance NVar[ŷ(x)]/σ2 = ν(x). The

G−optimality criterion is based upon the maximum ν(x) over the entire design region,

the I−optimality criteria is based upon the ν(x) over a region of interest, and the

V−optimality criteria is based upon the ν(x) for a specified set of points in the design

region. A design is considered G−optimal if the maximum value of the ν(x) over the

design region is a minimum, while a design is considered V−optimal if it minimizes

the average ν(x) over a set of points of interest in the design region. Finally, a design
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is considered I−optimal if it minimizes the average ν(x) over the design region for

the regression model.

Since G−, V−, and I− criteria are prediction-oriented and A− and D− criteria

are parameter-oriented criteria, the G−, V−, and I− criteria are mostly used for

second-order designs while the A− and D− criteria are mostly used for first-order

designs. While the G− and D− criteria are widely seen throughout literature, the

G−criterion can become computationally difficult as the design matrix grows. Fortu-

nately, the I−criterion is computationally easier to implement than the G−criterion,

and is available in several software programs (Montgomery, 2013). For more on

alphabetic-optimality, please see Chapter 8 in (Myers and Anderson-Cook, 2009).

2.2 Full Model Estimable Designs

Designs which are full model estimable are designs which can estimate all fac-

tors within the form of the empirical model used to represent the process or system

response. For a second-order polynomial model, the design must contain enough

degrees of freedom to estimate p effects where

p = 1 + 2k +
k(k − 1)

2
=

(k + 1)(k + 2)

2

Recall a second-order polynomial model contains 1 intercept, k main effects, k pure

quadratic, and k(k − 1)/2 two-factor interaction terms for k factors (Myers and

Anderson-Cook, 2009).

2.2.1 2k and 3k Factorial Designs.

In contrast to the One Factor at Time (OFAT) design strategy where factors are

varied individually, Factorial Designs vary factors simultaneously thus allowing for

estimates of interactions between factors. If measurements are made on the system
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or process response for all possible combinations of the values or levels of the different

factors, the design plan is called a full factorial design experiment (Connor and Zelen,

1959). For example, if two factors A and B have a and b levels, respectively, each

factorial design replication would contain ab treatment combinations while adding an

additional factor C with c levels would require abc treatment combinations.

The 2k Factorial Design consists of k factors each at only two levels and is a special

case of the full factorial design with 2k observations per replication. 2k designs have

many useful properties. In addition to being orthogonal, 2k designs are A−, G−, D−
and I−optimal for fitting a first-order model or first-order model with interactions

(Montgomery, 2013). The 2k-type designs are widely used for factor screening as it

provides the smallest number of runs for independently estimating all main effects

and interactions for k factors. In total, the number of estimable effects for a 2k

design is 2k − 1 consisting of k main effects,
(
k
2

)
two-way interactions,

(
k
3

)
three-way

interactions, ... , and 1 k-way interactions. A 23 design with three factors, denoted

A, B, and C, can estimate k = 3 main effects (A,B,C),
(
3
2

)
= 3 two-way interactions

(AB,AC,BC), and one 3-way interaction (ABC). See Table 1 for the 23 design

matrix.

Table 1. A 23 Full Factorial Design

Run A B C AB AC BC ABC
1 − − − + + + −
2 + − − − − + +
3 − + − − + − +
4 + + − + − − −
5 − − + + − − +
6 + − + − + − −
7 − + + − − + −
8 + + + + + + +

Note: Factor settings have been coded, replacing the low setting
by − and the high setting by +.
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The 3k Factorial Design, which consists of k factors each at only three levels, is a

special case of the full factorial design with N = 3k observations per replication. See

Table 2 for a 33 design matrix.

Table 2. A 33 Full Factorial Design

Run A B C A2 B2 C2 AB AC BC ABC
1 0 0 0 2 2 2 2 2 2 0
2 0 0 1 2 2 1 2 1 1 1
3 0 0 2 2 2 2 2 0 0 2
4 0 1 0 2 1 2 1 2 1 1
5 0 1 1 2 1 1 1 1 1 1
6 0 1 2 2 1 2 1 0 1 1
7 0 2 0 2 2 2 0 2 0 2
8 0 2 1 2 2 1 0 1 1 1
9 0 2 2 2 2 2 0 0 2 0
10 1 0 0 1 2 2 1 1 2 1
11 1 0 1 1 2 1 1 1 1 1
12 1 0 2 1 2 2 1 1 0 1
13 1 1 0 1 1 2 1 1 1 1
14 1 1 1 1 1 1 1 1 1 1
15 1 1 2 1 1 2 1 1 1 1
16 1 2 0 1 2 2 1 1 0 1
17 1 2 1 1 2 1 1 1 1 1
18 1 2 2 1 2 2 1 1 2 1
19 2 0 0 2 2 2 0 0 2 2
20 2 0 1 2 2 1 0 1 1 1
21 2 0 2 2 2 2 0 2 0 0
22 2 1 0 2 1 2 1 0 1 1
23 2 1 1 2 1 1 1 1 1 1
24 2 1 2 2 1 2 1 2 1 1
25 2 2 0 2 2 2 2 0 0 0
26 2 2 1 2 2 1 2 1 1 1
27 2 2 2 2 2 2 2 2 2 2

Note: Factor settings have been coded, replacing the low setting by 0, intermediate setting
by 1, and the high setting by 2.

The addition of a third factor level over the 2k design allows modeling the response

surface as a quadratic function. Each main effect has 2 degrees of freedom used to esti-

mate a first-order (linear) and second-order (quadratic) component. While each two-

way interaction has 4 degrees of freedom, one for each linear×linear, linear×quadratic,
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quadratic×linear, and quadratic×quadratic effect. In total, the number of estimable

effects for a 3k design is 3k − 1 consisting of k main effects, k pure quadratic effects,
(
k
2

)
two-way interactions with four degrees of freedom,

(
k
3

)
three-way interactions with

eight degrees of freedom, ... , and 1 k-way interactions with 2k degrees of freedom.

For example, a design with three factors, denoted A, B, and C, can estimate k = 3

main effects (A,B,C), k = 3 pure quadratic effects (A2, B2, C2),
(
3
2

)
= 3 two-way

interactions (AB,AC,BC), and one 3-way interaction (ABC).

2.2.2 Central Composite Designs (CCD).

Box and Wilson (1951) introduced a class of response surface designs as an alter-

native to the 3k factorial designs. The Central Composite Designs (CCD) contain a 2k

or 2k−p
V (see 2.3.1) design, axial/star runs, and center runs which are set at the middle

of the factor range. One reason for the CCD being a popular class of second-order

designs is because of the sequential nature in which they can be implemented. Typi-

cally, if the first-order response model associated with the 2k or 2k−p
V design proves to

be a poor representation of the system response, center points are added to provide

information on the overall curvature in the system while axial points are added to

allow for the fitting of a second-order response model.

In addition to the number of runs associated with the 2k or 2k−p
V design, the

CCD contain 2k runs per replication on the axis of each factor at a distance α from

the center of the design. As such, the CCD typically involve k factors at 5 levels per

factor. The value of α can be chosen so the design is rotatable, meaning the prediction

variance for some point x is the same at all points that are equidistant from the design

center. For CCD, the rotatable condition is satisfied by choosing α = 4
√
nf , where nf

is the number of factorial runs. In other words, the variance of predicted response

Var[ŷ(x)] is constant on spheres (Montgomery, 2013). However, it is not necessary to
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have exact rotatability. By using α =
√
k, the CCD is not necessarily rotatable, but

the loss in rotatability is negligible while producing a more preferable design (e.g.,

more meaningful design-level settings (Myers and Anderson-Cook, 2009)).

Lastly, the CCD contains nc center runs. The number of center runs affects

the variance of the predicted response Var[ŷ(x)]. In the case of spherical or near

spherical designs, (α =
√
k or = 4

√
nf ), having 3−5 center runs achieves a reasonable

distribution of the scaled prediction variance, SPV (x) = NVar[ŷ(x)]/σ2 over the

design region (Myers and Anderson-Cook, 2009).

2.2.3 Face-Centered Composite Designs (FCD).

A variant of the standard CCD is called the face-centered composite design (FCD).

This design locates the axial points in the center of each face in the factorial space

at a distance α = 1 from the center. The face-centered design sacrifices rotatability

but is useful in design situations that prevent larger axial distances, such as designs

near the edges of performance envelopes. Additionally, as compared to the CCD, the

FCD requires only 1 − 2 center runs in order to achieve a reasonable distribution of

the scaled prediction variance over the design region.

2.2.4 Computer Generated Designs.

Two important and useful concepts in statistical procedures used to assess exper-

imental designs are optimality and robustness. Whereas the robustness of a design

implies the design is insensitive to assumptions and/or models, optimal designs are

generally developed for a specific set of assumptions and/or models.

Based upon the empirical model selected to represent the system response, avail-

able sample size, design factor values, a set of candidate points, and other constraints,

“optimal” designs can be generated through the use of computer algorithms. While
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many criteria are available with which to generate designs, the criterion most often

used due to its relatively simple computational nature is D-optimality (Myers and

Anderson-Cook, 2009). However some computer packages use a criterion based upon

good prediction capacity through examining scaled prediction variance. For instance,

JMP can generate both D−optimal and I−optimal designs.

In contrast to algorithms where all possible sets of candidate points were evaluated,

Meyer and Nachtsheim (1995) developed a coordinate exchange algorithm which sys-

tematically searched individual design coordinates to find the optimal settings thereby

removing the candidate set of runs requirement (Montgomery, 2013).

The term “optimal” can be misleading as it implies the computer generated design

is the single best design to use in a given situation. However, in truth, the “optimal”

design is more likely to be one of a range of designs which can be used to meet a

specific scientific objective. Both a benefit and disadvantage of computer generated

“optimal” designs is while a custom design can be created for any specified model

vice using a standard design, the design criterion is based upon the “correctness” of

the model matrix. DuMouchel and Jones (1994) addressed the model-dependency

problem by presenting “a Bayesian modification of D−optimality that allows the

experimenter to ‘hedge bets’ about an assumed model.”

While caution should be taken when dealing with computer generated designs

there are times when they are helpful. For instance, when there are constraints on

factor-level combinations and sample size, or unusual combinations of factor range,

or there is the need to augment some current design with additional runs (Myers and

Anderson-Cook, 2009).
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2.3 Reduced Run Designs

As the number of factors k increases the run size requirement increases to a point

which make full factorial designs sometimes impractical and inefficient. The sparsity

of effects principle states the effects on a system or response of interest attributable

to most high-order interactions are negligible when compared to some of the main

effects and low-order interactions (Montgomery, 2013). For example, a full 27 design

requires 128 runs for estimating 127 main effects and interactions but sparsity of

effects means only a subset of the 7 main effects and 21 two-way interactions are

likely significant. As such, only a fraction of the complete 27 runs are required to

obtain estimates on significant effects. As a result, reduced run designs have been

developed to be more efficient in terms of design size.

2.3.1 2k−p and 3k−p Fractional Factorial Designs (FFD).

The 2k−p Fractional Factorial Design is comprised of a subset of the runs of the

2k Factorial Design. Similar to the 2k Factorial Design, the 2k−p Fractional Factorial

Designs consists of k factors each at only two levels. The value of p specifies the

degree to which the design is fractionated, determined by 1/2p.

Table 3. A 27−4 Fractional Factorial Design, Principle Fraction

Run A B C D=AB E=AC F=BC G=ABC
1 + + + + + + +
2 + + − + − − −
3 + − + − + − −
4 + − − − − + +
5 − + + − − + −
6 − + − − + − +
7 − − + + − − +
8 − − − + + + −
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For instance, a 27−4 design (See Table 3) is a 1/24 = 1/16th fraction of the 27

design. As such, the 27−4 design contains 8 runs or 1/16th of the 128 runs for the 27

design. A key issue is how should the fractional design be selected.

Generally, the first k−p independent columns are generated by the runs in the 2k−p

design. In the 27−4 design, the first 3 columns are generated by the runs associated

with the 23 full factorial design. The remaining p columns can be generated as

interactions of the first k − p columns (Wu and Hamada, 2011). While these p

columns are dependent upon the first k − p columns, they are independent of each

other. As such, the value of p determines the required number of independent design

generators. Because the design generators were determined by column interactions,

the p factor effect estimates are aliased, meaning the factor effects on the system

response can not be estimated separately from factor interactions.

For the 27−4 design in Table 3, the p = 4 design generators are D = AB, E = AC,

F = BC, and G = ABC. Since D = AB, the estimate of the effect of factor D on

the response is affected by the effects of A and B. The degree to which the effects are

aliased is given by the design resolution. The 27−4 design in Table 3 is of Resolution

III (27−4
III ) because main effects (D) are aliased with two-way interactions (AB). The

technique used to generate the design in Table 3 will provide the “principle” fraction

of a complete 2p family of fractions. In practice any of the remaining 2p − 1 fractions

may be used, each having the same design resolution.

While the design generators identify some of the alias structure, the complete

design alias structure is determined by the complete defining relation for the design

obtained by adding all combinations of the design generators. The defining relation

is comprised of the p = 4 design generators and their 2p − p − 1 = 11 interactions

(Montgomery, 2013). While 2k−p
V designs would be more desirable because of their
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aliasing structure, 2k−p
IV and 2k−p

III designs are most commonly used for screening due

to more economical run sizes.

When a large number of factors are being considered, the 3k factorial can be

excessively large, even more so than for the 2k factorial. However, similar to the

2k factorial, under sparsity of effect, fractional designs can be considered which still

provide sufficient information for significant effect estimations.

The 3k−p Fractional Factorial Designs consists of k factors each at three levels.

The value of p again specifies the degree to which the design is fractionated, deter-

mined by 1/3p. For instance, a 3k−2 design is a 1/9th fraction, while 3k−3 design is

a 1/27th fraction. A general procedure for constructing a 3k−p fractional factorial

design is given by Montgomery (2013). Connor and Zelen (1959) and Xu (2005)

provide an extensive list of 3k−p designs. Unfortunately, especially as compared to

2k−p designs, the aliasing structure for 3k−p designs is very complex especially as the

level of fractioning increases. If effect interactions are not negligible, design results

can be difficult, even nearly impossible to interpret because of the partial aliasing of

two-degree-of-freedom components (Montgomery, 2013).

Regular designs are 2k−p and 3k−p designs constructed through defining relations

among its factors. Nonregular designs lack such a defining relation. Two-level nonreg-

ular designs often used for factor screening are Plackett-Burman and Supersaturated

designs (Cheng and Wu, 2001). Three-level nonregular response surface design are

Box-Behnken designs.

2.3.2 Plackett-Burman Designs (PB).

Plackett and Burman (1946) developed nonregular two-level fractional factorial

designs which can study k = N −1 variables in N runs, where N is a multiple of 4. If
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N = 2i for i ≥ 2 , PB designs are synonymous with 2k factorial designs. An example

design is presented in Table 4 where N = 12 runs for k = 11 factors.

Table 4. A 12-run Plackett-Burman Design for 11 factors

Run A B C D E F G H I J K
1 + − + − − − + + + − +
2 + + − + − − − + + + −
3 − + + − + − − − + + +
4 + − + + − + − − − + +
5 + + − + + − + − − − +
6 + + + − + + − + − − −
7 − + + + − + + − + − −
8 − − + + + − + + − + −
9 − − − + + + − + + − +
10 + − − − + + + − + + −
11 − + − − − + + + − + +
12 − − − − − − − − − − −

The nonregular Plackett-Burman designs sacrifice a simple alias structure for bet-

ter run economy and projectivity when compared to regular 2k−p designs. A 2k−p
III has

projectivity 2, meaning it will collapse into a 22 factorial in a subset of any two of

the original k factors, while PBk=N−1
III have projectivity 3 or 4 depending upon the

design size. For instance, the Table 4 design will project into a full 23 factorial from

11 factors in 12 runs while a comparable 211−7
III design will only project into a full 22

factorial from 11 factors in 16 runs.

Unfortunately, PB designs have complex alias structures. In the Table 4 design,

each main effect is partially aliased with 45 two-factor interactions while each main

effect in a 211−7
III design is completely aliased with at most 4 two-factor interactions

(Montgomery, 2013). Due to the complex aliasing structure, analysis of PB designs

can become difficult. Hamada and Wu (1992) discuss methods for analyzing designs

with complex aliasing based upon the sparsity of effect and effect heredity principles.

The effects heredity principle states if an interaction is significant the components

of the interaction are significant. Under strong heredity all main effects within a
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significant interaction are themselves significant; however, under weak heredity not

all the main effects are significant. In combination with effect sparsity, effect heredity

would be concerned with only significant two-factor interactions. Thus if AB is

significant, then under strong heredity, A and B would be significant while under

weak heredity only A or B would be significant (Montgomery, 2013).

2.3.3 Box-Behnken Designs (BBD).

Box and Behnken (1960) developed a family of 17 efficient rotatable/near-rotatable

spherical three-level designs suitable for fitting second-order (quadratic) response

models. The BBD are formed by combining two-level factorials with balanced incom-

plete block designs (BIBD) or partially balanced incomplete block designs (PBIBD).

In contrast to the CCD, the Box-Behnken design does not contain any points at

the vertices or face-center of the design but rather at the center of the edges of the

process space. As a result, the Box-Behnken designs avoid extreme values for factor-

level combinations which may be impossible to test due to cost or physical process

constraints (Montgomery, 2013).

Of the original 17 designs proposed by Box and Behnken, 10 were constructed from

BIBDs while 7 were constructed from PBIBDs. BIBD are incomplete block designs

where each factor appears an equal number of times with every other factor while

with PBIBD each factor does not appear an equal number of times. The BBD are

formed by varying p parameters in a full factorial manner while the remaining k − p

parameters are kept steady at the center factor level setting. For k = 3−5 and 6−7,

p = 2 and 3, respectively for the BBD designs. Additionally, the BBD uses three

to five center runs to avoid singularity in the design matrix for k = 4 and 7 and

to maintain favorable design qualities like a reasonable Var[ŷ(x)] distribution (Myers

and Anderson-Cook, 2009).
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Overall, the design run requirements for both the BBD and CCD are comparable.

For k = 3 and 5, the CCD with the full two-level factorial requires two more runs,

not including center runs, than the BBD while for k = 4, the CCD and BBD require

an equal number of runs. As a result, the benefit of employing a BBD design over a

CCD is not necessarily due to run efficiency but rather the factor level combination

location in the design space.

Through the years some of the original BBD have been improved upon in terms of

rotatability, average prediction variance, D− andG−efficiency (Nguyen and Borkowski,

2008). In addition, new Box-Behnken type designs with larger k (Mee, 2000) and dif-

fering orthogonally blocked solutions (Nguyen and Borkowski, 2008) than the original

BBD have been proposed. More recently small Box-Behnken Designs (SBBD) have

been proposed which reduce the run size requirement of the original BBD by replac-

ing the full 2k factorial designs within the balanced incomplete block designs (BIBD)

or partially balanced incomplete block designs (PBIBD) partly by 23−1
III designs and

partly by full factorial designs (Zhang et al., 2011). When compared to the original

BBD, the SBBD possess smaller D−efficiency values but the values are still relatively

high (> 70%) for k ≤ 11 while requiring fewer runs.

2.3.4 Other Reduced Run Designs.

Oehlert and Whitcomb (2002) proposed a class of equireplicated irregular fractions

of 2k factorials with resolution V where equireplicated means each factor occurs an

equal number of times at their high and low levels. These designs, called Minimum-

Run Res V Designs, are constructed using the Li and Wu (1997) columnwise-pairwise

algorithm to optimize the D−optimal criteron. These may be used on their own if

interested in a first-order response model or used as the factorial component of the

CCD for a second-order response model estimation.
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Morris (2000) proposed a method for constructing three-level designs, called aug-

mented pairs designs, suitable for fitting second-order response models within a

cuboidal region of interest. Starting with an initial two-level first-order design, the

third level of each factor is determined by a linear combination of the levels of ev-

ery pair of points. In comparison to BBD and CCD, Morris (2000) showed that

the precision of model parameter and expected response estimates are favorable and

requires fewer runs (Myers et al., 2004). In comparison to small composite designs,

augmented pair designs show better model parameter and expected response estimate

but do require more runs.

Gilmour (2006) introduced a class of three-level designs made up of subsets of 3k

factorial designs befittingly known as subset designs. Letting Sr represent the rth

orbit, subset designs have the form c0S0 + c1S1 + · · · + ckSk, where cr, r = 1, . . . , k,

is the number of replicates of the points in Sr and an orbit is comprised of a subset

of points of the 3k factorial design on the hypersphere of radius r
1
2 about the center

point, S0. As such each subset design may contain points from any number of orbits

with each subset Sr containing
(
k
r

)
2r points consisting of a 2r factorial design at levels

±1 for each combination of r factors and with the remaining q − r factors at 0. In

order for the subset design to be capable of fitting a second-order response, Gilmour

(2006) stipulated two requirements:

• cr > 0 for at least two r and cr > 0 for at least one r with 1 ≤ r ≤ q− 1 so that

all quadratic parameters can be estimated

• cr > 0 for at least one r ≥ 2 so that all interactions can be estimated.

Additionally, Gilmour (2006) specified fractional subset and incomplete subset re-

duced run designs where fractional subset designs replace all the 2r factorials in at

least one Sr by a fractional factorial and incomplete subset designs use a reduced

number of the
(
k
r

)
factorial sets of r factors.
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2.4 Saturated/Near-Saturated Designs

Recall a second-order model contains p = 1 + 2k + k(k − 1)/2 terms. A k = 4

factor BBD design has 15 terms to estimate but the design itself contains 24 points

plus center runs. While reduced run designs like the CCD and the BBD provide more

efficient designs than the full model estimable designs, these designs still can possess

far more design points than needed to estimate the second-order response effects.

As a result, the class of saturated or near-saturated designs have been developed.

Saturated or near-saturated designs are designs such that the number of design points

are equal to or near, but not less than, the number of terms in the design model.

2.4.1 Small Composite Designs (SCD).

In contrast to the CCD and FCD, which contain a 2k or 2k−p
V factorial design,

Hartley (1959) suggested replacing the factorial design with a special resolution III

factorial design, denoted III∗ where two-factor interactions are not aliased with other

two-factor interactions. As a result, the number of design runs is decreased resulting

in Small Composite Designs (SCD). The SCD sacrifices good prediction variance

properties with the reduction in run size because main effects could be aliased with

two-factor interactions. However, the SCD design still allows for the estimation of all

main-effects because the star portion of the design provides additional information.

While Hartley (1959) suggested replacing the 2k or 2k−p
V factorial with a III∗ factorial,

additional work included using irregular 2k fractions (Westlake, 1965) and columns of

Plackett-Burman designs (Draper, 1985). Draper and Lin (1990) improved upon the

previous design work associated with modifying the composite structure of the SCD

by adding a k = 10 design and reducing the run size on previous designs by deleting

repeat runs (see Table 5). While deleting repeat runs reduced the design size, it also

reduces the amount of information available to estimate pure error.
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Table 5. Cube Points in Some Small Composite Designs (Draper and Lin, 1990)

3 4 5 6 7 8 9 10
Coefficients
p = (k + 1)(k + 2)/2 10 15 21 28 36 45 55 66
Star points 2k 6 8 10 12 14 16 18 20
Minimal points in cube 4 7 11 16 22 29 37 46
Box and Hunter (1957) 8 16 16 32 64 64 128 128

(23) (24) (25−1
V ) (26−1

V ) (27−1
V ) (28−2

V ) (29−2
V ) (210−3

V )
Hartley (1959) 4 8 – 16 32 – 64 –

(23−1
III∗) (24−1

III∗) – (26−2
III∗) (27−2

III∗) – (29−3
III∗) –

Westlake (1965) – – 12 – 26 – 44 –
– – (3/8X25) – (13/64X27) – (11/128X29) –

Draper (1985) – – 12 – 28 – 44
Draper and Lin (1990) 4 8 12 16 24 36 40 48
after elimination of repeat 4 8 11 16 22 30 38 46

2.4.2 Rechtschaffner Designs.

Rechtschaffner (1967) presented a class of saturated second-order designs for k

factors in a cuboidal region of interest based upon 4 different design generators shown

in Table 6. Each design generator is identified with the different terms of the second-

order model.

Table 6. Design Generators for Saturated Fractions of 3n Factorial Design

Number Design Generator
I (-1,· · · , -1) for all n
II (-1, 1, · · · , 1) for all n
III (-1, -1, 1) for n = 3

(1, 1, -1, · · · , -1) for n > 3
IV (1, 0, · · · , 0) for all n

For instance, Design Generator I identified with the intercept term while Design

Generators II and III are identified with the main effect and two-way interaction

effects, respectively. Treatment combinations are obtained by permuting the elements

of each design generator to reach the desired saturated fraction, see Table 7. While the

designs are not based upon D−optimality criterion, the signs of the design generators

can be varied in order to get higher D values. Unfortunately, while Rechtschaffner

designs are available for any k, they should be limited to small values of k because
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as k grows the designs can be shown to have an asymptotic D−efficiency of 0 with

respect to the class of saturated designs (Notz, 1982).

Table 7. Saturated Fraction of a 35 Factorial Design

Run Design Generator A B C D E
1 (-1, -1, -1, -1, -1) -1 -1 -1 -1 -1
2 (-1, 1, 1, 1, 1) -1 1 1 1 1
3 1 -1 1 1 1
4 1 1 -1 1 1
5 1 1 1 -1 1
6 1 1 1 1 -1
7 (1, 1, -1, -1, -1) 1 1 -1 -1 -1
8 1 -1 1 -1 -1
9 1 -1 -1 1 -1
10 1 -1 -1 -1 1
11 -1 1 1 -1 -1
12 -1 1 -1 1 -1
13 -1 1 -1 -1 1
14 -1 -1 1 1 -1
15 -1 -1 1 -1 1
16 -1 -1 -1 1 1
17 (1, 0, 0, 0, 0) 1 0 0 0 0
18 0 1 0 0 0
19 0 0 1 0 0
20 0 0 0 1 0
21 0 0 0 0 1

2.4.3 Box-Draper Designs.

Box and Draper (1974) presented a class of saturated second-order designs for

k factors in a cuboidal region of interest based on D−optimality. Although the

designs are optimal for k = 2 and 3, they are not optimal for k ≥ 4. Dubova and

Federov (1972) found a better design for k = 4 and Notz (1982) found better designs

for k = 5 or 6 by presenting alternative designs higher D−optimal criterion values.

Additionally, while better designs for k ≥ 7 have not been identified, Box and Draper

(1974) designs were proved not optimal via an existence result. Therefore, the Box and
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Draper designs are minimal D−optimal designs for k = 2 and 3, and are “minimal

designs of a simple form for any k” for a cuboidal region of interest. Similar to the

Rechtschaffner designs, the Box and Draper designs are available for any k, however

they too should be limited to small values of k because as k grows the designs can be

shown to have an asymptotic D−efficiency of 0 with respect to the class of saturated

designs (Notz, 1982).

2.4.4 Hybrid Designs.

Roquemore (1976) presented a set of saturated or near-saturated second-order

designs for k = 3 to 6 factors which are rotatable or near-rotatable while achieving

the same degree of orthogonality as a CCD. The hybrid designs for k variables is

constructed by first augmenting a k − 1 variable central composite design with an

additional column for variable k. The design is then augmented with additional runs

for variable k at different levels to create desirable design properties. Table 8 shows

the design matrix for hybrid 310. In this instance, k = 3, so the hybrid design contains

a k = 2 CCD augmented with a third column. These designs do suffer from having

odd factor level settings. For instance, none of the 10 factor level settings for C in

Table 8 are set to the typical values of 0 or ±1.

Table 8. Hybrid Design 310: k = 3 and n = 10

Run A B C
1 0 0 1.2906
2 0 0 -0.1360
3 -1 -1 0.6386
4 1 -1 0.6386
5 -1 1 0.6386
6 1 1 0.6386
7 1.736 0 -0.9273
8 -1.736 0 -0.9273
9 0 1.736 -0.9273
10 0 -1.736 -0.9273
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2.4.5 Hoke Designs.

Hoke (1974) presented a class of second-order designs for k = 3 to 6 factors at

3 levels based on saturated and near-saturated irregular fractions of the 3k factorial.

For each number of factors k, seven versions of the Hoke designs exist, denoted D1,

D2, . . ., D7, consisting of a mixture of factorial, axial, and edge points making the

Hoke designs suitable for a cuboidal region of interest (Myers and Anderson-Cook,

2009). Tables 9 and 10 show the design matrices for two versions, one saturated D2

and one near-saturated D6, of Hoke designs for k = 3.

Table 9. Hoke Design D2: k = 3 and n = 10

Run A B C
1 -1 -1 -1
2 1 1 -1
3 1 -1 1
4 -1 1 1
5 1 -1 -1
6 -1 1 -1
7 -1 -1 1
8 -1 0 0
9 0 -1 0
10 0 0 -1

Hoke compared his designs with Box-Behnken and SCD designs of comparable

size based upon the tr(X′X)−1 (A−optimality) and |X′X| (D−optimality) criteria

and concluded that his designs compared favorably (Khuri and Cornell, 1996).

2.4.6 Other Minimal Run Designs.

Angelopoulos et al. (2009) presented a class of balanced, near rotatable second-

order designs which minimized the number of factorial runs associated with a CCD

suitable for a spherical region of interest. Their designs were determined by search-

ing through designs with 0(mod2) factorial runs (i.e., keep an even number of runs)
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Table 10. Hoke Design D6: k = 3 and n = 13

Run A B C
1 -1 -1 -1
2 1 1 -1
3 1 -1 1
4 -1 1 1
5 1 -1 -1
6 -1 1 -1
7 -1 -1 1
8 -1 0 0
9 0 -1 0
10 0 0 -1
11 1 1 0
12 1 0 1
13 0 1 1

associated with a CCD for k factors and selecting the design with the lowest possi-

ble correlation among main effects. In order to discriminate between near rotatable

CCDs, the Draper-Pukelsheim measure Q∗ was applied (Angelopoulos et al., 2009).

Unfortunately, it was determined the α-value for the CCD axial runs which pro-

vided the maximum Q∗ value, did so at the expense of efficiently estimating all the

parameters for a second-order model.

2.5 Supersaturated Designs (SSD)

Supersaturated designs are a type of fractional factorial design where the number

of factors k under investigation exceeds the number of available experimental runs

N . Since k > N − 1, the degrees of freedom within the design are insufficient to

estimate all the main effects and the design matrix cannot be orthogonal. Therefore

in order for supersaturated designs to useful as screening designs only a few factors

can be active. As such supersaturated designs are generally used when the number of

potential factors is large but few are believed to have actual effects (effect sparsity)

and either budget or time constraints limit the number of experimental runs.
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Since Satterthwaite (1959) first introduced the supersaturated design as a random

balanced design, research has focused in primarily three areas: design construction

methods, development of criterion to assess supersaturated designs, and data analysis

methods used to identify the important effects.

Booth and Cox (1962) provided seven supersaturated designs for two-level factors

created via computer search using the E(s2) criterion, which measures the average cor-

relation between design columns. Overall, a general design construction method did

not exist until Lin (1993) developed a method based upon half fractions of Hadamard

matrices. Subsequently, Lin (1995), Nguyen (1996) and Li and Wu (1997) have pro-

posed methods based upon the E(s2) criterion while Jones et al. (2008) constructed

designs using Bayesian D−optimality.

Yamada and Lin (1999) and Yamada et al. (1999) were the first to discuss and pro-

vide construction methods for three-level supersaturated designs. Fang et al. (2000)

first addressed the construction of multi-level supersaturated designs. More recently,

Yamada et al. (2006) detailed a general construction method for mixed-level super-

saturated designs. Overall beyond construction methods, little else has been done

with three-level SSD.

Closely related to the manner and method of which supersaturated designs are

created is the evaluation criteria used to differentiate amongst these design methods.

E(s2) optimality is still the most widely used criterion for selection of supersaturated

designs, but a Bayesian D-optimality criteria has also been used. Beattie et al. (2002)

detailed an alternative two-stage Bayesian model selection strategy by combining a

stochastic search variable selection method and an intrinsic Bayes factor method.

Similar to the number of ways to assess design quality, there are many ways of

analyzing the data recorded during the experimental runs to identify the important

effects/factors. Three methods include stepwise selection procedures, the Gauss-
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Dantzig selector, and model averaging. Candes and Tao (2007) developed the Gauss-

Dantzig selector which was further expanded upon by Phoa et al. (2009) who proposed

a graphical procedure and an automatic variable selection method to accompany the

Dantzig selector. Marley and Woods (2010) evaluated the use of E(s2)−optimal and

Bayesian D−Optimal designs and the three analysis strategies through the use of

simulation-based experiments.

Overall, SSDs offer a method of greatly reducing the amount of experimentation

needed to screen important factors. However, they should not be used without a

clear understanding of the risks involved. SSDs are nonregular factorial designs, in

which, orthogonality is not obtainable. Most existing criteria for SSDs measure the

non-orthogonality combinatorially between two factors. Some care must be exercised

in the selection of a design, however, as a supersaturated design that departs consider-

ably from an orthogonal design could produce misleading results. This can especially

occur if the departure from orthogonality is more than slight. E(s2) gives an intuitive

measure of nonorthogonality where smaller is better. In particular, stepwise regression

is one method that has been used for identifying the effects that should be estimated,

but stepwise regression can easily fail to make the appropriate determination when

the correlation between the columns in the design are not quite small.

2.6 Second-Order Screening Designs

In contrast with the traditional sequential design approach of response surface

methodology (RSM), recent literature has proposed employing a single experimental

design capable of preforming both factor screening and response surface exploration

when conducting multiple experiments is unrealistic due to time, budget, or other

constraints. For instance, in agricultural settings the time duration of the design can

be exceedingly long. Also within a manufacturing setting experimental preparation
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can be overly time-consuming. Directly applicable to the DOD, Lawson (2003) points

out fixed deadlines for scale up and production of prototype engineering designs may

not allow the possibility of follow-up experimentation.

Two important principles used in developing successful screening designs are spar-

sity and heredity. The sparsity principle stems from the Pareto principle which states

that most of the variability in a system or process output is due to a small number of

inputs. Traditionally, factor sparsity has led to the assumption in screening designs

that only a small number of factors are present among the actual model terms, while

effect sparsity indicates that the number of active effects compared to active factors

is relatively small. Therefore, it is possible for the effect sparsity assumption to hold

while factor sparsity does not.

Heredity, either strong or weak, is the second screening principle commonly used

when considering model selection. Strong heredity implies that if a model includes

a two-factor interaction, then its constituent main effects are included in the model.

Conversely, weak heredity requires only one of the two constituent main effects be

included in the model.

Initial attempts to use response surface designs capable of performing both fac-

tor screening and response surface exploration with a single design relied upon the

design’s projection capacity.

Cheng andWu (2001), hereafter referred to as CW, introduced a two-stage analysis

method where the first stage consisted of performing factor screening analysis to

identify important factors and the second stage involved fitting a second-order model

by assuming both factor sparsity and strong effect heredity held and the region chosen

for factor screening contained the optimal response surface area.

For the first stage, CW recommended a main effect analysis method for simplicity.

The key linkage between stage one and two was the ability to project the initial larger
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factor space onto a smaller factor space capable of fitting a second-order model. When

the factor sparsity principle holds, any regular fractional factorial design of resolution

R projects onto any subset of R − 1 factors as a full factorial. For example, a 23−1
III

design (R = 3) can project into a 22 design in every subset of two factors (Myers and

Anderson-Cook, 2009). This projection property extends to nonregular designs like

Plackett-Burman designs by Lin and Draper (1992) and Wang and Wu (1995).

Because a design can project onto many different combinations of factors, a

projection-efficiency criterion was developed to compare orthogonal designs based

upon (1) the number of eligible projected designs with lower-dimension projections

being more important than higher-dimension projections and (2) the estimation effi-

ciency for eligible projected designs determined by the ratio of each designs D− and

G−efficiences (Cheng and Wu, 2001). Eligible designs are designs which can fit a

second-order model and the D− and G−efficiences, denoted Deff and Geff respec-

tively, criteria compare the performance of a design against a corresponding optimal

design (Myers and Anderson-Cook, 2009).

CW studied three orthogonal array (OA) designs (OA(18, 37), OA(27, 38), and

OA(36, 312)) which demonstrated desirable projection properties. The OA(N, 3k)

connotation shows the design’s number of runs N and number of factors k. In contrast

to 3n−k designs which have defining contrast subgroups to describe the design struc-

ture, the OA(N, 3k) designs studied by CW required computer search to classify the

possible projected designs. Fortunately, while more complex, the overall projection

properties are better and generally required fewer runs. When compared to CCDs,

the OA(N, 3k) designs studied exhibited good D−efficiences but poor G−efficiences

as p, number of projected factors, increases. However, this should be expected be-

cause as p increases, the size of CCDs increases while the size for the OA(N, 3k)

designs is fixed for any p.
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Improving on the designs of CW, Xu et al. (2004), hereafter referred to by XCW,

proposed a combinatorial method for constructing new and efficient OA designs and a

design selection approach based upon a projection aberration criterion which combines

the generalized word-length pattern of the generalized minimum aberration criterion

(Xu and Wu, 2001) for factor screening and the projection-efficiency criteria (Cheng

and Wu, 2001) for interaction detection. XCW assessed the projection performance

of three combinatorially non-isomorphic OA(18, 37)s and three combinatorially non-

isomorphic OA(27, 313)s. Their three-step approach involves: (1) screening out poor

orthogonal arrays (OA) for factor screening using the generalized word-length pattern,

(2) applying the projection aberration criterion to select a best design from step 1,

and (3) determining the best level permutations of the design from step 2 to improve

design projection eligibility and estimation efficiency under the second-order model

1.2.

Ye et al. (2007), hereafter referred to as YTL, also examined 3-level 18-run and 27-

run orthogonal designs. However, in addition to considering the projection properties

of designs, their design choices were based on both model estimation and model

discrimination criteria. The two model estimation criteria employed examine the

proportion of estimable models, Estimation Capacity (EC), and average D−efficiency

of all models, Information Capacity (IC). Defining the design D, the space of models

F over D with F ′, F ′ ⊂ F , the subset of estimable models over D and fiεF
′ then

Jones et al. (2007) proposed six non-Bayesian criteria for model discrimination of

which YTL employed the Average Expected Prediction Differences (AEPD)

AEPD =
1(
d′
2

)
∑

fi,fjεF ′(D)

E(‖ŷi − ŷj‖2|‖y‖ = 1) (2.4)
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and Minimum Maximum Prediction Difference (MMPD)

MMPD = min1≤i<j≤nmax‖y=1‖‖ŷi − ŷj‖ (2.5)

where d′ is the number of estimable models, y is the response vector, and ŷi is the

fitted value of the ith model Ye et al. (2007).

While previous work focused primarily on the design’s projection capacity, Ed-

wards and Truong (2011) applied the Jones and Nachtsheim (2011b) method for

finding efficient designs with minimal aliasing between main effects and two-factor

interactions. Deemed MA designs, Edwards and Truong (2011) constructed 18, 27,

and 30-run designs for simultaneous screening and response surface optimization for

k = 4 to 7, k = 4 to 13, and k = 6 to 14 factors, respectively, by minimizing the sum

of squares of the elements of the alias matrix, A, subject to a lower bound on the

primary model D−efficiency. The optimization of interest is

mindTr[A(d)′A(d)], subject toDe(d) ≥ lD, (2.6)

where A(d) is the alias matrix for design d, De(d) is the D-efficiency of design d, and

lD denotes the lower bound for D-efficiency and 0 < lD ≤ 1 (Jones and Nachtsheim,

2011b). Edwards and Truong (2011) compared the 27-run orthogonal arrays of XCW

and YTL with MA designs generated with lD values of 0.8 and 0.9 in terms of D-

efficiency of projection and, via a simulation study, the proportion of active factors

declared significant (Power 1) and the proportion of simulations in which only the

true active factors are declared significant (Power 2). Although ranked last in terms

of D-efficiency, the MA designs showed superior performance with their ability to

detect active factors (Edwards and Truong, 2011).
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A common thread connecting all CW, XCW, YTL, and MA designs is the use of a

linear and quadratic main-effects only analysis for factor screening. Unfortunately, if

the strong effect heredity principle fails to hold important interactions can be missed

leading to a misspecified response surface model. Edwards and Truong (2011) con-

firmed this assertion for their designs and the XCW designs through a simulation

model possessing only weak effect heredity. All four research efforts, CW, XCW,

YTL, and MA, acknowledge that while the strong effect heredity assumption could

be overly restrictive, they feel the inclusion of quadratic main effects diminishes the

concern. However, if the concern exists where a factor’s significance is only present in

interactions with other factors, the authors proposed either the Bayesian approaches

of Box and Meyer (1993) or Chipman et al. (1997) to account for significant factors

outside of main effects when the strong effect heredity principle fails to hold (Cheng

and Wu, 2001). Unfortunately, these methods are not readily available to practition-

ers in statistical software packages and are computationally intensive procedures, thus

likely making their use impractical (Edwards and Truong, 2011). Therefore potential

research efforts could focus on new or inventive analysis techniques.

Another area of concern for the CW, XCW, YTL, and MA designs is the projection

of main and/or quadratic effects deemed significant during the first stage analysis

does not always yield a second-order design. CW highlighted this concern using

an illustrative example of a 27-run experiment with nine continuous factors (39−6).

During the main and quadratic effects screening analysis, CW identified five important

factors, unfortunately, there are no eligible projected designs of five factors in the

39−6 design. As a result, a subset of the five factors must be considered when a single

experiment is used and important effects could be missed.

Edwards and Mee (2011) introduced new spherical Fractional Box-Behnken de-

signs (FBBD) aimed at overcoming the projection deficiencies and main/quadratic
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effect only analysis issues found in the CW/XCW/YTL/MA designs. The FBBD

provide the ability to explore interactions during the screening stage and to fit second-

order models via a backward elimination analysis strategy to each of the (k−1)-factor

projections. Edwards and Mee (2011) questioned the applicability of the factor spar-

sity principle assumed by CW/XCW/YTL/MA designs preferring instead the idea of

effect sparsity when many factors are under consideration. By effect sparsity, Edwards

and Mee (2011) meant the number of active effects vice factors is relatively small.

Since it is possible for effect sparsity to hold, even when factor sparsity does not,

Edwards and Mee (2011) determined it was necessary to search for designs having

larger factor eligible projections than the maximum p = 5 factor projections provided

with the CW/XCW/YTL/MA designs.

The FBBDs are developed by taking subsets of the two-level fractional factorial

designs which compose a BBD (Edwards and Mee, 2011). The number of runs as-

sociated with the FBBD vary depending upon the number of factors involved. For

k ≤ 9, the FBBD are saturated/near-saturated response surface designs, but for

k = 10 . . . 13, the FBBD are reduced run designs. While FBBDs require more runs

than CW/XCW/YTL/MA designs, their ease of construction and aliasing structure

facilitate an analysis strategy which cannot be applied to the CW/XCW/YTL/MA

designs. Additionally, as k increases, the FBBD designs require fewer runs than

CCD/BBD.

Jones and Nachtsheim (2011a) introduced a class of three-level designs referred to

as “definitive screening designs” where main effects are not biased by second-order

effects and all quadratic effects are estimable. Consisting of 2k+1 runs for k factors,

these designs were constructing using the same Jones and Nachtsheim (2011b) method

used by Edwards and Truong (2011).
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2.7 Chapter Summary

Experimental designs normally recommended for screening and optimization ex-

periments differ. If an experimenter can afford to run only one experiment, a choice

must be made between one objective or the other. If the experimenter chooses a

classical response surface design, a subset of the factors must be selected to work

with and the chance of missing other important factors and improvement possibilities

increases. If the experimenter decides to conduct a screening experiment, important

interactions and quadratic effects may be missed that could lead to further process

improvements and cost reductions.

Examination of classical response surface designs show the CCD and FCD as

efficient second-order designs, particularly when compared with the 3k factorial, which

can accommodate a spherical and cuboidal region, respectively, through appropriate

design parameter selection while not requiring an unusually large number of design

points. The efficiency of the second-order BBD is comparable to the CCD. However,

the BBD only accommodates a spherical design region ignoring the “extreme” corner

factorial points. This can be beneficial if the operational region does not permit

corner points. Unfortunately, as the number of factors k increases, so does the run

size of these designs. Whereas both the CCD and FCD can reduce their run size

requirements through the use of fractional factorials, while sacrificing the number of

estimable effects, the ability to reduce run size requirements for BBD has seen little

work. One proposal makes use of replacing the standard 23 designs in a BBD with a

combination of 23 and 23−1
III designs. However, the reduction in run size requirements

has a corresponding reduction in parameter estimation efficiency (Zhang et al., 2011).

When cost constraints restrict the design size to levels at or equal to the number of

parameters in a second-order design, hybrid designs for a spherical region and Hoke

designs for a cuboidal region are typically a better option than either Box-Draper
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or SCD because they generally provide better efficiency (Myers and Anderson-Cook,

2009). Unfortunately, hybrid and Hoke designs have only been specified for up to

k = 7 and 6 factors respectively. This could inhibit their usefulness, particularly if

a factor screening design cannot be used to eliminate insignificant factors. Hybrid

designs currently involve the use of a 2k factorial. A potential expansion of hybrid

designs could include using 2k−p factorial designs for large values of k. Additionally,

since these designs are currently using full factorials, the idea of design projectivity

of the reduced run designs could be addressed. Unfortunately, the nature of hybrid

designs results in odd factor levels which could be difficult to obtain in practice. It

is in this instance that computer generated designs can prove most useful for even

saturated designs.

Contrary to classical response surface designs, examination of screening designs

finds focus primarily on examining main effects, potentially at the expense of impor-

tant interactions and quadratic effects. While there is an abundant amount of research

dealing with the construction methods, evaluation criteria, and data analysis meth-

ods used to identify the important effects for supersaturated designs, the majority of

research is based upon the underlying response model being linear (first-order) in na-

ture. Matsuura et al. (2011) constructed a supersaturated design using a Hadamard

matrix and proposed its use in robust parameter design. The design was compared

with a D−optimal design, a Central Composite design, and a Box-Behnken design.

With considerably fewer experimental runs, as compared with CCDs and BBDs, the

design demonstrated the capacity to identify main, two-factor interaction, and pure

quadratic effects of active factors under the effect sparsity assumption. Matsuura

et al. (2011) work currently is the only published findings which directly address the

consideration of quadratic effects.
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In the instances where neither a single screening nor a response surface design can

fulfill experimental objectives, second-order screening designs have been proposed

which screen factors beyond only main effects and provide the capacity to estimate a

second-order response model within a subset of the original factors, simultaneously.

In order to do so, assumptions such as factor or effect sparsity and effect heredity,

to a varying degree, are made to facilitate data analysis. To what degree these

assumptions hold has been debated and therefore could influence the use of these

designs. As a result, a thorough comparison of these designs, as these assumptions

are relaxed, could provide insight into the various designs’ robustness.
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III. Effect of Heredity and Sparsity on Second-Order

Screening Design Performance

3.1 Introduction

Box and Wilson (1951) laid the foundation for response surface methodology

(RSM) by outlining a philosophy of sequential experimentation which included ex-

periments for screening, region seeking (such as steepest ascent), process/product

characterization, and process/product optimization (Myers et al., 2004). Box and

Liu (1999) illustrated a number of concepts which Box understood as the embodi-

ment of RSM at the time to include the philosophy of sequential learning.

In contrast with the traditional sequential design approach of RSM, recent lit-

erature has proposed employing a single experimental design capable of preforming

both factor screening and response surface exploration when conducting multiple ex-

periments is unrealistic due to time, budget, or other constraints. For instance, in

agriculture the time required to collect data specified by the design can be exceed-

ingly long. Within a manufacturing setting experimental preparation can be overly

time-consuming. Directly applicable to the DoD, Lawson (2003) points out fixed

deadlines for scale up and production of prototype engineering designs may not allow

the possibility of follow-up experimentation.

Military systems, particularly aerodynamic systems, are complex. It is not unusual

for these systems to exhibit nonlinear behavior. Developmental testing may be tasked

to characterize the nonlinear behavior of such systems but are also restricted in how

much testing can be accomplished. In these instances, the single experimental design

may be the preferred approach.
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Second-order screening design methodology, sometimes referred to as One-Step

RSM or Definitive Screening, is a relatively new focus in statistical research and ef-

fectively unknown to the defense test community. Important questions as to the meth-

ods’ usefulness and applicability to Defense testing remain unaddressed but nonethe-

less second-order screening designs for nonlinear system responses provide a means

to effectively focus test resources onto those factors driving system performance.

Two important principles used in developing successful screening designs are spar-

sity and heredity. The sparsity principle stems from the Pareto principle which states

that most of the variability in a system or process output is due to a small number

of inputs. Traditionally, factor sparsity has led to the assumption in screening de-

signs that only a small number of factors are present among the actual model terms.

However, the degree to which factor sparsity holds as the number of factors grows

has resulted in a debate between effect sparsity and factor sparsity. Effect sparsity

indicates that the number of active effects compared to active factors is relatively

small. Therefore, it is possible for the effect sparsity assumption to hold while factor

sparsity does not.

Heredity, either strong or weak, is another screening principle commonly used

when considering model selection. Strong heredity implies that if a model includes

a two-factor interaction, then both its constituent main effects are also included in

the model. Conversely, weak heredity requires only one of the two constituent main

effects be included in the model.

Edwards and Truong (2011) preformed a simulation study examining several

second-order screening designs focusing on each design’s ability to correctly iden-

tify active factors under a variety of conditions. While 5000 responses vectors were

simulated for several combinations of coefficient magnitudes, the truth models used

assumed both factor sparsity and strong effect heredity. This article formally ex-
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amines the robustness of the two arguably best second-order screening designs with

respect to the assumptions of both sparsity (factor or effect) and heredity (strong or

weak).

The remainder of this paper is organized as follows. Section 3.2 discusses the

literature relevant to second-order screening designs. In Section 3.3, we present an

empirical study that quantifies the robustness of the two second-order screening de-

signs to assumptions of heredity and sparsity. Section 3.4 provides a discussion on

the tradeoffs in selecting among the two designs and Section 3.5 presents a summary

of the conclusions.

3.2 Second Order Screening Designs

Initial attempts to use response surface designs capable of performing both fac-

tor screening and response surface exploration with a single design relied upon the

design’s projection capacity.

Cheng andWu (2001), hereafter referred to as CW, introduced a two-stage analysis

method where the first stage consisted of performing factor screening analysis to

identify important factors and the second stage involved fitting a second-order model

by assuming both factor sparsity and strong effect heredity held and that the region

chosen for factor screening contained the optimal response surface area.

For the first stage, CW recommended a main effects analysis method for simplicity

purposes. The key linkage between stage one and two was the ability to project the

initial larger factor space onto a smaller factor space capable of fitting a second-order

model. When the factor sparsity principle holds, any regular fractional factorial

design of resolution R projects onto any subset of R−1 factors as a full factorial. For

example, a 23−1
III design (R = 3) can project into a 22 design (Myers and Anderson-

Cook, 2009). This projection property extends to nonregular designs like Plackett-
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Burman designs as discussed by both Lin and Draper (1992) and Wang and Wu

(1995).

Since a larger design can project onto many different combinations of factors,

a projection-efficiency criterion was developed to compare orthogonal designs based

upon (1) the number of eligible projected designs with lower-dimension projections

being more important than higher-dimension projections and (2) the estimation ef-

ficiency for eligible projected designs determined by the ratio of each design’s D−
and G−efficiences (Cheng and Wu, 2001). Eligible designs are designs which can fit

a second-order model and have calculated D− and G−efficiences, denoted Deff and

Geff , respectively, to compare the performance of that design against a corresponding

optimal design (Myers and Anderson-Cook, 2009).

CW studied three orthogonal array (OA) designs (OA(18, 37), OA(27, 38), and

OA(36, 312)) each of which demonstrated desirable projection properties. TheOA(N, 3k)

connotation shows the design’s number of runs N and number of factors k. In con-

trast to 3n−k designs which have defining contrast subgroups to describe the design

structure, the OA(N, 3k) designs studied by CW required computer search to classify

the possible projected designs. Fortunately, while design generation is more complex,

the overall projection properties are better and generally required less experimental

runs. When compared to Central Composite Designs (CCD), the OA(N, 3k) designs

studied exhibited good D−efficiences but poor G−efficiences as p, number of pro-

jected factors, increases. However, this is to be expected because as p increases, the

size of CCDs increases while the size for the OA(N, 3k) designs is fixed for any p.

Improving on the designs of CW, Xu et al. (2004), hereafter referred to by XCW,

proposed a combinatorial method for constructing new and efficient OA designs and a

design selection approach based upon a projection aberration criterion which combines

the generalized word-length pattern of the generalized minimum aberration criterion
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(Xu and Wu, 2001) for factor screening and the projection-efficiency criteria (Cheng

and Wu, 2001) for interaction detection. XCW assessed the projection performance

of three combinatorially non-isomorphic OA(18, 37)s and three combinatorially non-

isomorphic OA(27, 313)s. Their three-step approach involves: (1) screening out poor

orthogonal arrays for factor screening using the generalized word-length pattern, (2)

applying the projection aberration criterion to select a best design from step (1), and

(3) determining the best level permutations of the design from step (2) to improve

design projection eligibility and estimation efficiency under the second-order model:

η = β0 +
k∑

i=1

βixi +
k∑

i=1

βiix
2
i +

k−1∑

i=1

k∑

j=i+1

βijxixj. (3.1)

Ye et al. (2007), hereafter referred to as YTL, also examined 3-level 18-run and 27-

run orthogonal designs. However, in addition to considering the projection properties

of designs, their design choices were based on both model estimation and model

discrimination criteria. The two model estimation criteria employed examine the

proportion of estimable models, Estimation Capacity (EC), and average D−efficiency

of all models, Information Capacity (IC). Defining the design D, the space of models

F over D with F ′, F ′ ⊂ F , the subset of estimable models over D and fiεF
′ then

Jones et al. (2007) proposed six non-Bayesian criteria for model discrimination of

which YTL employed the Average Expected Prediction Differences (AEPD)

AEPD =
1(
d′
2

)
∑

fi,fjεF ′(D)

E(‖ŷi − ŷj‖2|‖y‖ = 1) (3.2)

and Minimum Maximum Prediction Difference (MMPD)

MMPD = min1≤i<j≤nmax‖y=1‖‖ŷi − ŷj‖ (3.3)
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where d′ is the number of candidate models, y is the response vector, and ŷi is the

fitted value of the ith model (Ye et al., 2007).

While previous work focused primarily on the design’s projection capacity, Ed-

wards and Truong (2011) applied the Jones and Nachtsheim (2011b) method for

finding efficient designs with minimal aliasing between main effects and two-factor

interactions. Deemed MA designs, Edwards and Truong (2011) constructed 18, 27,

and 30-run designs for simultaneous screening and response surface optimization for

k = 4 to 7, k = 4 to 13, and k = 6 to 14 factors, respectively, by minimizing the sum

of squares of the elements of the alias matrix, A, subject to a lower bound on the

primary model D−efficiency. Their optimization of interest is

mindTr[A(d)′A(d)], subject toDe(d) ≥ lD, (3.4)

where A(d) is the alias matrix for design d, De(d) is the D-efficiency of design d, and

lD denotes the lower bound for D-efficiency with 0 < lD ≤ 1 (Jones and Nachtsheim,

2011b). Edwards and Truong (2011) compared the projection D-efficiency and, via

a simulation study, the proportion of active factors declared significant (Power 1)

and the proportion of simulations in which only the true active factors are declared

significant (Power 2) of the 27-run orthogonal arrays of XCW, YTL, and MA designs

generated with lD values of 0.8 and 0.9. Although ranked last in terms of D-efficiency,

the MA designs showed superior performance in their ability to detect active factors

(Edwards and Truong, 2011).

A common thread connecting all CW, XCW, YTL, and MA designs is the use of a

linear and quadratic main-effects only analysis for factor screening. Unfortunately, if

the strong effect heredity principle fails to hold important interactions can be missed

leading to a misspecified response surface model. Edwards and Truong (2011) con-

firmed this assertion for their designs and the XCW designs using a simulation model
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possessing only weak effect heredity. All four research efforts, CW, XCW, YTL, and

MA, acknowledge that while the strong effect heredity assumption could be overly

restrictive, they feel the inclusion of quadratic main effects diminishes the concern.

However, Edwards and Truong (2011) proposed either the Bayesian approaches of

Box and Meyer (1993) or Chipman et al. (1997) to account for significant factors

outside of main effects when the strong effect heredity principle fails to hold (Cheng

and Wu, 2001). Unfortunately, these methods are not readily available in statistical

software packages and are computationally intensive procedures, thus likely limiting

widespread use (Edwards and Truong, 2011). Therefore potential research efforts

could focus on new analysis techniques.

Another area of concern for the CW, XCW, YTL, and MA designs is that the

projection of main and/or quadratic effects deemed significant during the first stage

analysis do not always yield a second-order design. CW highlighted this concern using

an illustrative example of a 27-run experiment with nine factors (39−6). During the

main and quadratic effects screening analysis, CW identified five important factors;

unfortunately, there are no eligible projected designs of five factors in the 39−6 design.

As a result, a subset of the five important factors must be considered in order to have

enough degrees of freedom to fit a full second-order model. Since not all the important

factors can be used important effects could be missed.

Edwards and Mee (2011) introduced new spherical Fractional Box-Behnken de-

signs (FBBD) aimed at overcoming the projection deficiencies and main/quadratic

effect only analysis issues found in the CW/XCW/YTL/MA designs. The FBBD pro-

vides the ability to explore interactions during the screening stage and to fit second-

order models via a backward elimination analysis strategy to each of the (k−1)-factor

projections. Edwards and Mee (2011) questioned the applicability of the factor spar-

sity principle assumed by CW/XCW/YTL/MA designs preferring instead the idea of
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effect sparsity when many factors are under consideration. Since it is possible for effect

sparsity to hold, even when factor sparsity does not, Edwards and Mee (2011) deter-

mined it was necessary to search for designs having larger factor eligible projections

than the maximum p = 5 factor projections provided with the CW/XCW/YTL/MA

designs.

The FBBDs are developed by taking subsets of the two-level fractional factorial

designs which compose a Box-Behnken Design (BBD) (Edwards and Mee, 2011).

The number of runs associated with the FBBD vary depending upon the number

of factors involved. For k ≤ 9, the FBBD are saturated/near-saturated response

surface designs, but for k = 10, . . ., 13, the FBBD are reduced run designs. While

FBBDs require more runs than CW/XCW/YTL/MA designs, their ease of construc-

tion and aliasing structure facilitate an analysis strategy which cannot be applied to

the CW/XCW/YTL/MA designs. Additionally, as k increases, the FBBD designs

require fewer runs than CCD/BBD designs.

Jones and Nachtsheim (2011a) introduced a class of three-level designs referred to

as “definitive screening designs” where main effects are not biased by second-order

effects and all quadratic effects are estimable. Consisting of 2k+1 runs for k factors,

these designs were constructed using the same Jones and Nachtsheim (2011b) method

used by Edwards and Truong (2011).

3.3 Empirical Study

Our empirical study examines the nine-factor designs, identified as (1/2)BB9.1 in

Table 4 of Edwards and Mee (2011) and the definitive screening design generated using

conference matrices based on Xiao et al. (2012). The study focus is on each design’s

robustness to detect important effects in models exhibiting different combinations of

heredity and sparsity. A single replication is investigated in depth for each scenario
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where the truth model terms and coefficients were chosen to be a variation on the

original nine-factor model considered by Edwards and Mee (2011). Additionally, each

design is analyzed using the author’s recommended analysis methodologies. Summary

statistics involving replications for each model are then provided and discussed.

The Edwards and Mee (2011) analysis methodology involves performing a factor-

based backward elimination to identify a possible second-order model. Since there

are not enough degrees of freedom to fit a full second-order model for all the factors

under consideration, the first step assumes at least one factor can be omitted from

the second-order model containing all k = 9 factors. Therefore the root mean-square

error (RMSE) for each of the 9 (k− 1 = 8)-factor second-order models are compared

with the model yielding the smallest RMSE being selected and thus identifying which

factor is omitted. Subsequent steps involve determining if any additional factors may

be removed based upon whether all effects, to include main, quadratic, and two-way

interactions, in the second order model containing the factor are negligible.

Jones and Nachtsheim (2011a) suggest using a forward stepwise regression, which

considers all terms in a second-order model of k = 9 factors. With a p-value of 0.1 to

enter, effects are added into the second-order model while forcing a strong heredity

model. As such, when either two-factor interactions or pure-quadratic effects are

included in the model, the lower order terms must also be included.

Four cases are considered to represent different combinations of model heredity

(strong or weak) and sparsity (factor or effect). In addition, each model is examined

with four different noise level scenarios. The noise level vector used in each scenario

is identical across each model for each design. The 49 treatment combinations for

the Edwards and Mee (2011) design and the 21 treatment combinations for the Jones

and Nachtsheim (2011a) design are given in Tables 11 and 12, respectively. Tables

13 and 14 show the simulated response values for the 16 combinations of case and

51



noise level scenario for Edwards and Mee (2011) and Jones and Nachtsheim (2011a),

respectively.

Case 1 data was simulated based on the model

yi = 2Ai − 1.5Ei + 2Gi − 3A2
i + 2.5E2

i − 4G2
i + 4AiEi + 3.5AiGi − 5EiGi + εi, (3.5)

thereby representing a response which exhibits factor sparsity and strong heredity

between active two-factor interactions or pure quadratic effects and main effects.

The model exhibits factor sparsity as only 3 of the 9 factors are active within the 9

effects contained in the model.

The Edwards and Mee (2011) analysis method first performs a factor-based back-

ward elimination to identify a possible second-order model. Table 15 shows the back-

ward elimination steps for the Table 13, Case 1 data for all four noise level scenarios

using α = 0.05.

For example, when considering Case 1, Scenario 3, where εi ∼ N(0, 3), the eight-

factor second-order model that omits F has the smallest RMSE among all the eight-

factor models and factor J contributions as a main, quadratic, or as a part of a

two-way interaction are negligible.

After identifying which factors can be removed, Edwards and Mee (2011) fit a full

second-order model in the remaining factors. Again when considering scenario three,

a full second-order model is fit using the remaining factors: A, B, C, D, E, G, and H.

In contrast to Edwards and Mee (2011) factor-based backward elimination analysis

method, Jones and Nachtsheim (2011a) perform forward stepwise regression with a

p-value of 0.1 to enter while forcing a strong heredity model. Table 16 shows the

forward stepwise regression steps for the Case 1 data for all four noise level scenarios.

Since the “combined” option rule is used for the forward stepwise regression, the

inclusion of two-way interaction or pure quadratic effects result in the inclusion of
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Table 11. Nine-Factor Fractional Box-Behnken Design (FBBD)

A B C D E F G H J

1 1 1 0 0 0 0 0 0
1 -1 -1 0 0 0 0 0 0
-1 1 -1 0 0 0 0 0 0
-1 -1 1 0 0 0 0 0 0
1 0 0 1 0 0 1 0 0
1 0 0 -1 0 0 -1 0 0
-1 0 0 1 0 0 -1 0 0
-1 0 0 -1 0 0 1 0 0
1 0 0 0 1 0 0 0 1
1 0 0 0 -1 0 0 0 -1
-1 0 0 0 1 0 0 0 -1
-1 0 0 0 -1 0 0 0 1
1 0 0 0 0 1 0 1 0
1 0 0 0 0 -1 0 -1 0
-1 0 0 0 0 1 0 -1 0
-1 0 0 0 0 -1 0 1 0
0 1 0 1 0 0 0 0 1
0 1 0 -1 0 0 0 0 -1
0 -1 0 1 0 0 0 0 -1
0 -1 0 -1 0 0 0 0 1
0 1 0 0 1 0 0 1 0
0 1 0 0 -1 0 0 -1 0
0 -1 0 0 1 0 0 -1 0
0 -1 0 0 -1 0 0 1 0
0 1 0 0 0 1 1 0 0
0 1 0 0 0 -1 -1 0 0
0 -1 0 0 0 1 -1 0 0
0 -1 0 0 0 -1 1 0 0
0 0 1 1 0 0 0 1 0
0 0 1 -1 0 0 0 -1 0
0 0 -1 1 0 0 0 -1 0
0 0 -1 -1 0 0 0 1 0
0 0 1 0 1 0 1 0 0
0 0 1 0 -1 0 -1 0 0
0 0 -1 0 1 0 -1 0 0
0 0 -1 0 -1 0 1 0 0
0 0 1 0 0 1 0 0 1
0 0 1 0 0 -1 0 0 -1
0 0 -1 0 0 1 0 0 -1
0 0 -1 0 0 -1 0 0 1
0 0 0 1 1 1 0 0 0
0 0 0 1 -1 -1 0 0 0
0 0 0 -1 1 -1 0 0 0
0 0 0 -1 -1 1 0 0 0
0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 -1 -1
0 0 0 0 0 0 -1 1 -1
0 0 0 0 0 0 -1 -1 1
0 0 0 0 0 0 0 0 0
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Table 12. Nine-Factor Definitive Screening Design (DSD)

A B C D E F G H J

0 1 1 1 1 1 1 1 1
0 -1 -1 -1 -1 -1 -1 -1 -1
1 0 -1 -1 -1 -1 1 1 1
-1 0 1 1 1 1 -1 -1 -1
1 -1 0 -1 1 1 -1 -1 1
-1 1 0 1 -1 -1 1 1 -1
1 -1 -1 0 1 1 1 1 -1
-1 1 1 0 -1 -1 -1 -1 1
1 -1 1 1 0 -1 -1 1 -1
-1 1 -1 -1 0 1 1 -1 1
1 -1 1 1 -1 0 1 -1 1
-1 1 -1 -1 1 0 -1 1 -1
1 1 -1 1 -1 1 0 -1 -1
-1 -1 1 -1 1 -1 0 1 1
1 1 -1 1 1 -1 -1 0 1
-1 -1 1 -1 -1 1 1 0 -1
1 1 1 -1 -1 1 -1 1 0
-1 -1 -1 1 1 -1 1 -1 0
1 1 1 -1 1 -1 1 -1 -1
-1 -1 -1 1 -1 1 -1 1 1
0 0 0 0 0 0 0 0 0
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Table 15. FBBD Stepwise Backward Elimination Results: Case 1

Scenario
ε ∼ N(0, 1) ε ∼ N(0, 2) ε ∼ N(0, 3) ε ∼ N(0, 5)

Step Factors Removed
1 H J F E
2 – F J F
3 – – – H
4 – – – D
5 – – – C
6 – – – B

Table 16. DSD Forward Stepwise Results: Case 1

Scenario
ε ∼ N(0, 1) ε ∼ N(0, 2) ε ∼ N(0, 3) ε ∼ N(0, 5)

Step Effects Added
1 EG AG EG CH
2 AG EG AG EJ
3 AE EJ AE F 2

4 G2 AE DF AG
5 AJ – H2 D
6 DH – – –
7 AD – – –
8 F – – –
9 C – – –
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all the factors which comprise the two-way interaction or pure quadratic effects. For

example, when considering Scenario 3, where εi ∼ N(0, 3), the EG and H2 effects,

which entered the regression model in steps 1 and 5, respectively, would require the

E, G, and H factors also be in the model.

Case 2 data was simulated using the model

yi = 2Ai − 1.5Ei + 2Gi + 4Ci − 3Hi + 2.5E2
i − 4GiHi + 3.5EiHi − 5CiGi + εi, (3.6)

to represent a response exhibiting effect sparsity and strong heredity between active

two-factor interactions or pure quadratic effects and their associated main effects.

The model is considered to exhibit effect sparsity because although over 50% of the

factors (5 of 9) are active only 9 of 54 total effects are active. Cases 1 and 2 both have

the same number of active effects but differ in the number of active factors contained

within the second-order portion of the model.

Table 17 provides Edwards and Mee (2011) factor-based backward elimination

results and Table 18 Jones and Nachtsheim (2011a) forward stepwise regression, re-

spectively, using the Case 2 response data associated with each design for all four

noise level scenarios in Tables 13 and 14.

Table 17. FBBD Stepwise Backward Elimination Results: Case 2

Scenario
ε ∼ N(0, 1) ε ∼ N(0, 2) ε ∼ N(0, 3) ε ∼ N(0, 5)

Step Factors Removed
1 H J F E
2 – F J B
3 – B – D

Case 3 data was simulated using the model

yi = 2Ai + 2Ei − 1.5A2
i + 2.5E2

i − 3.5AiEi + 4AiGi − 5EiGi + εi, (3.7)
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Table 18. DSD Forward Stepwise Results: Case 2

Scenario
ε ∼ N(0, 1) ε ∼ N(0, 2) ε ∼ N(0, 3) ε ∼ N(0, 5)

Step Effects Added
1 CG C2 C2 EH
2 GH GH E2 CE
3 EH CG DH AE
4 A CJ A2 CF
5 E2 A DG AG
6 J2 GJ AF D
7 DH – – –
8 CF – – –

thereby representing a response exhibiting factor sparsity and weak heredity between

active two-factor interactions or pure quadratic effects and main effects. The model

exhibits factor sparsity because only 3 of the 9 factors are active within the 7 effects

contained in the model. Since not all factors, which comprise the two-factor interac-

tions, are present as a main effect, the model exhibits weak heredity. For instance,

although factor G is significant within two two-factor interactions, factor G by itself

is not significant.

Table 19 provides Edwards and Mee (2011) factor-based backward elimination

results and Table 20 Jones and Nachtsheim (2011a) forward stepwise regression, re-

spectively, using the Case 3 response data associated with each design for all four

noise level scenarios in Tables 13 and 14.

Case 4 data was simulated using the model

yi = 2Ai − 1.5Ei + 2Gi − 3H2
i + 2.5E2

i + 4AiCi + 3.5EiHi − 5CiGi − 4GiHi + εi (3.8)

represents a response exhibiting effect sparsity and weak heredity between active two-

factor interactions or pure quadratic effects and main effects. The case 4 model is
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identical to the model used by Edwards and Mee (2011). However, the response data

differs even for the εi ∼ N(0, 1) scenario.

Table 21 provides Edwards and Mee (2011) factor-based backward elimination

results and Table 22 Jones and Nachtsheim (2011) forward stepwise regression, re-

spectively, using the Case 4 response data associated with each design for all four

noise level scenarios in Tables 13 and 14.

Table 19. FBBD Stepwise Backward Elimination Results: Case 3

Scenario
ε ∼ N(0, 1) ε ∼ N(0, 2) ε ∼ N(0, 3) ε ∼ N(0, 5)

Step Factors Removed
1 H J A E
2 – F H C
3 – B F H
4 – – J B
5 – – C J
6 – – B –

Table 20. DSD Forward Stepwise Results: Case 3

Scenario
ε ∼ N(0, 1) ε ∼ N(0, 2) ε ∼ N(0, 3) ε ∼ N(0, 5)

Step Effects Added
1 AE AE EG F 2

2 BF CH AG E2

3 J2 EJ AE FH
4 A2 J2 DF AG
5 FH E2 H DE
6 DJ – AF –
7 E2 – – –

3.4 Case Comparison

Tables 23, 24, 25, and 26 show which effects from Cases 1 through 4’s four different

noise level scenarios were properly identified, incorrectly identified (Type I error), and

not identified (Type II error), for both nine-factor designs.
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Table 21. FBBD Stepwise Backward Elimination Results: Case 4

Scenario
ε ∼ N(0, 1) ε ∼ N(0, 2) ε ∼ N(0, 3) ε ∼ N(0, 5)

Step Factors Removed
1 F J F A
2 – F J G
3 – B – C

Table 22. DSD Forward Stepwise Results: Case 4

Scenario
ε ∼ N(0, 1) ε ∼ N(0, 2) ε ∼ N(0, 3) ε ∼ N(0, 5)

Step Effects Added
1 GH GH GH F 2

2 AH AE AH AC
3 AF EG DE BG
4 EF HJ AD CF
5 G2 E2 DG BF
6 AC J2 FH E
7 DF – A2 D
8 J – – –

Table 23. Second Order Screening Design Results: Case 1

Strong Heredity, Factor Sparsity Model:
2A− 1.5E + 2G− 3A2 + 2.5E2 − 4G2 + 4AE + 3.5AG− 5EG+ ε

Scenario DSD FBBD

ε ∼ N(0, 1) Identified A,E,G,G2, AE,AG,EG A,E,G,A2, E2, G2, AE,AG,EG
Type I errors C,D, F,H, J, AD,AJ,DH B,C,D, J,B2, C2, J2,

AB,AC,AD,AF,AJ,BE,BF,
BG,CD,CE,CF,DE,DF,DG,
DJ,EJ, FG, FJ

Type II errors A2, E2 NONE

ε ∼ N(0, 2) Identified A,E,G,AE,AG,EG A,E,G,A2, E2, G2, AE,AG,EG
Type I errors J,EJ H2, CD,DG
Type II errors A2, E2, G2 NONE

ε ∼ N(0, 3) Identified A,E,G,AE,AG,EG E,G,E2, G2, AE,AG,EG
Type I errors D,F,H,H2, DF B2, D2, AH,BG,DG
Type II errors A2, E2, G2 A,A2

ε ∼ N(0, 5) Identified A,E,G,AG G2, AG
Type I errors C,D, F,H, J, F 2, CH,EJ AJ
Type II errors A2, E2, G2, AE,EG A,E,G,A2, E2, AE,EG
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Table 24. Second Order Screening Design Results: Case 2

Strong Heredity, Effect Sparsity Model:
2A− 1.5E + 2G+ 4C − 3H + 2.5E2 − 5CG+ 3.5EH − 4GH + ε

Scenario DSD FBBD

ε ∼ N(0, 1) Identified A,C,E,G,H,E2, CG A,C,E,G,E2, CG
EH,GH

Type I errors D,F, J, J2, CF,DH B,H, J,A2, B2, C2, G2, J2, AB,
AC,AD,AE,AF,AJ,BD,BE,
BF,BG,BJ,CD,CE,CF,DE,DF,
DG,DJ,EG,EJ, FG, FJ,GJ

Type II errors NONE H,EH,GH

ε ∼ N(0, 2) Identified A,C,G,H,CG,GH A,C,E,G,H,E2, CG,EH,GH
Type I errors J, C2, CJ,GJ D,A2, H2, AC,CD,DG
Type II errors E,E2, EH NONE

ε ∼ N(0, 3) Identified A,C,E,G,H,E2 C,E,G,H,E2, CG,EH,GH
Type I errors D,F,A2, C2, AF,DG,DH A2, B2, D2, G2, AH,BG,DG
Type II errors CG,EH,GH A

ε ∼ N(0, 5) Identified A,E,G,C,H,EH C,H,CG
Type I errors D,F,AE,AG,CE,CF AJ, FJ
Type II errors E2, CG,GH A,G,E,E2, EH,GH

Table 25. Second Order Screening Design Results: Case 3

Weak Heredity, Factor Sparsity Model:
2A+ 2E − 1.5A2 + 2.5E2 − 3.5AE + 4AG− 5EG+ ε

Scenario DSD FBBD

ε ∼ N(0, 1) Identified A,E,A2, E2, AE A,E,A2, E2, AE,AG,EG
Type I errors B,D, F,H, J, B, C,D,G, J,B2, C2,

J2, BF,DJ, FH G2, J2, AB,AC,AD,AF,AJ,
BE,BF,BG,CD,CE,CF,DE,
DF,DG,DJ,EJ, FG, FJ

Type II errors AG,EG none

ε ∼ N(0, 2) Identified A,E,E2, AE A,E,E2, AE,AG,EG
Type I errors C,H, J, J2, CH,EJ H2, CD,DG
Type II errors A2, AG,EG A2

ε ∼ N(0, 3) Identified A,E,AE,AG,EG E,E2, EG
Type I errors D,F,G,H,AF,DF DG
Type II errors A2, E2 A,A2, AE,AG

ε ∼ N(0, 5) Identified A,E,E2, AG A,AG
Type I errors D,F,G,H, F 2, DE, FH F 2, AD,DF,DG
Type II errors A2, AE,EG E,A2, E2, AE,EG
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Table 26. Second Order Screening Design Results: Case 4

Weak Heredity, Effect Sparsity Model:
2A− 1.5E + 2G+ 2.5E2 − 3H2 + 4AC − 5CG+ 3.5EH − 4GH + ε

Scenario DSD FBBD

ε ∼ N(0, 1) Identified A,E,G,AC,GH A,E,G,E2, H2,
AC,CG,EH,GH

Type I errors C,D, F,H, J,G2, B, C,D,H, J,B2, C2,
AF,AH,DF,EF G2, J2, AB,AD,AE,AJ,

BD,BE,BG,BH,CD,DE,
DG,DH,DJ,EG,EJ,HJ

Type II errors E2, H2, CG,EH none

ε ∼ N(0, 2) Identified A,E,G,E2, GH A,E,G,E2, H2,
AC,CG,EH,GH

Type I errors H, J, J2, AE,EG,HJ A2, CD,DG
Type II errors H2, AC,CG,EH none

ε ∼ N(0, 3) Identified A,E,G,GH E,G,E2, H2, CG,EH,GH
Type I errors D,F,H,A2, AD,AH, A2, B2, D2, G2, AH,BG,DG

DE,DG,FH
Type II errors E2, H2, AC,CG,EH A,AC

ε ∼ N(0, 5) Identified A,E,G,AC E,H2

Type I errors B,C,D, F, F 2, BF,BG,CF B,D,E,H, J,B2, F 2,
H2, AB,AD,AE,BD,BF,BH,
BJ,DE,DF,EF, FH, FJ,HJ

Type II errors E2, H2, CG,EH,GH A,G,E2, AC,CG,EH,GH
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As expected for both the FBBD and DSD, Type II errors increased in all four

cases as the noise level increased. However, whereas the increase in the number of

Type II errors across the cases for the DSD were on the order of 1 to 3, the increase in

Type II errors for the FBBD were far greater, from 5 to 7, suggesting the DSD may

be more robust to noise effects. Unfortunately, the DSD did not exhibit robust results

when it came to whether or not weak or strong heredity and factor or effect sparsity

assumption held. When comparing strong heredity to weak heredity for DSD, the

DSD performed better when strong heredity was exhibited, particularly when effect

sparsity was present. Similarly, when comparing factor sparsity to effect sparsity for

DSD, the DSD performed better when factor sparsity was exhibited, particularly when

strong heredity was present. Overall, this is not surprising as the analysis method

for DSD forces a strong heredity model and the DSD has more power in determining

active effects when fewer factors are active Jones and Nachtsheim (2011a). The DSD

performance is inferior to the FBBD, in terms of Type II errors, at the lower noise

levels, Scenarios 1 and 2, in all but Case 2 which represented strong heredity and

effect sparsity. However, in all but one scenario in one case (Case 2, Scenario 2),

the Type II errors were limited to mostly pure quadratic effects and a few two-factor

interactions. This result carries across all case and scenario combinations for the

DSD and is likely a by-product of the design which focuses on main effects which are

unbiased by any second-order effect (pure quadratic or two-factor interaction) and

where second-order effects have some correlation but are not completely confounded

with other second-order effects.

In contrast, the FBBD has no discernible pattern in Type II errors. This implies

the FBBD is just as likely to miss important main effects as second-order effects,

especially at the higher noise levels. However at the lower noise levels, Scenarios 1

and 2, the FBBD made only a few Type II errors. In so doing, the FBBD consistently
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over specified a model, particularly at the lowest noise level, Scenario 1. With regards

to robustness to heredity and sparsity, the FBBD performed equally well for weak and

strong heredity and factor and effect sparsity, excluding Case 2. However, even with

nearly double the number of runs, the FBBD is susceptible to excluding an active

main effect during the initial stages of design analysis based upon RMSE, as noise

level increases as evident by Case 2, Scenario 1.

Table 27 displays average results of all active effects, second-order effects and pure

quadratic effects correctly identified based on five independent replications for all four

cases considered and for each level of random noise. Clearly, the larger FBBD does

quite well compared to DSD, but its performance degrades as noise levels increase.

The smaller DSD does reasonably well under strong heredity but does seem to struggle

finding the interactions and quadratic effects.

3.5 Conclusions

Regardless of the heredity (weak or strong), sparsity (effect or factor), and noise

level combination, the DSD is robust in its ability to correctly identify active main

effects. At lower noise levels, the DSD performs favorably in identifying active two-

factor interactions but as the noise level increases the DSD performance suffers. Ad-

ditionally, regardless of case or scenario, the DSD struggled finding active quadratic

effects. However, if the experimenter has prior knowledge regarding the importance

of second-order effects, especially pure quadratic effects, and wishes to maintain the

requirement for a single design without follow up design runs, augmenting the DSD

could reduce the correlation between a factor’s second-order effect without sacrificing

too much in the way of design run efficiency. For instance, within many physical mod-

els of complex aerodynamic systems, a quadratic “velocity” factor is often present.
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Table 27. Second Order Screening Design Results: Average

Strong Heredity, Factor Sparsity Model: 5 Rep Avg
Scenario DSD FBBD
ε ∼ N(0, 1) Identified 67%, 50%, 20% 100%, 100%, 100%
ε ∼ N(0, 2) Identified 58%, 37%, 20% 96%, 97%, 100%
ε ∼ N(0, 3) Identified 51%, 33%, 27% 80%, 90%, 100%
ε ∼ N(0, 5) Identified 49%, 23%, 0% 53%, 57%, 67%

Strong Heredity, Effect Sparsity Model: 5 Rep Avg
Scenario DSD FBBD
ε ∼ N(0, 1) Identified 98%, 95%, 80% 91%, 90%, 100%
ε ∼ N(0, 2) Identified 78%, 55%, 20% 96%, 100%, 100%
ε ∼ N(0, 3) Identified 84%, 70%, 40% 62%, 65%, 100%
ε ∼ N(0, 5) Identified 69%, 30%, 0% 53%, 50%, 40%

Weak Heredity, Factor Sparsity Model: 5 Rep Avg
Scenario DSD FBBD
ε ∼ N(0, 1) Identified 80%, 72%, 50% 100%, 100%, 100%
ε ∼ N(0, 2) Identified 60%, 44%, 20% 86%, 80%, 60%
ε ∼ N(0, 3) Identified 51%, 32%, 0% 69%, 64%, 80%
ε ∼ N(0, 5) Identified 60%, 44%, 20% 46%, 48%, 40%

Weak Heredity, Effect Sparsity Model: 5 Rep Avg
Scenario DSD FBBD
ε ∼ N(0, 1) Identified 49%, 23%, 0% 96%, 97%, 100%
ε ∼ N(0, 2) Identified 47%, 23%, 10% 91%, 93%, 90%
ε ∼ N(0, 3) Identified 44%, 20%, 10% 76%, 77%, 100%
ε ∼ N(0, 5) Identified 51%, 27%, 30% 53%, 50%, 60%

Note: Identified percentages correspond to percentage of active effects,
second-order effects, and pure quadratic effects.
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The FBBD has no discernible pattern in Type II errors. This implies the FBBD is

just as likely to miss important main effects as second-order effects. Thus, modifica-

tions to the FBBD design to ensure at least main effect Type II errors are eliminated

are not readily apparent. In addition, since the FBBD over specifies models, as in-

dicated by the large number of Type I errors particularly at lower noise levels, it

seems further fractionation of the FBBD is possible, which can reduce design run size

requirements without sacrificing Type II error performance.

Each design was examined using the authors’ recommended analysis method. Em-

ploying different analysis methods may yield improved performance of the design. For

instance, it is possible analyze the FBBD with the forward stepwise regression method

used on the DSD.

Whenever a screening design is employed, analytical tradeoffs must be accepted.

Overall, both designs performed in the environment to which they were designed.

The DSD is run size efficient when strong heredity and factor sparsity are present

and when few second-order effects are active. In contrast, the FBBD diminishes the

importance of the heredity and sparsity assumption but at the cost of additional

design runs. Depending upon subject matter expertise regarding a system under

study, selection or modification of one or both of the designs could certainly be useful

within many high-technology industries.
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IV. Augmentation of Definitive Screening Designs (DSD+)

4.1 Introduction

Response surface methodology (RSM) focuses on approximating a real world sys-

tem response typically with either a first-order or second-order polynomial model.

While the choice of experimental designs for first-order models is fairly straight for-

ward depending upon the shape of the experimental design region and number of

available experimental runs, choosing an experimental design to fit a second-order

model,

η = β0 +
k∑

i=1

βixi +
k∑

i=1

βiix
2
i +

k−1∑

i=1

k∑

j=i+1

βijxixj, (4.1)

is more complex due to the variety of design criteria and characteristics to consider.

Usually, the experimenter does not have a priori knowledge regarding the appro-

priate polynomial model to use to approximate the system response. As such it is

common practice in RSM to employ experiments sequentially. Box and Liu (1999)

illustrated the RSM philosophy of sequential learning where first-order designs are

typically used to perform factor screening and second-order designs are used to fit a

response surface exhibiting some degree of curvature. Since the a posteriori knowledge

about a system response possessing curvature comes from analysis of the first-order

design, the typically sequential nature of RSM allows developing second-order designs

by augmenting first-order designs with additional experimental runs.

Whether due to time, budget, or other constraints, there are times when conduct-

ing multiple experiments is unrealistic. For instance, Lawson (2003) points out fixed

deadlines for scale up and production of prototype engineering designs may not allow

the possibility of follow-up experimentation. Couple this with the fact that military
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systems, particularly aerodynamic systems, are complex and often exhibit nonlinear

behavior, there are times when a single experimental design capable of performing

both factor screening and higher order response surface exploration may be required.

Recent literature has proposed second-order screening design methodologies, some-

times referred to as One-Step RSM or Definitive Screening, employing a single exper-

imental design capable of both factor screening and fitting a second-order polynomial

model.

Edwards and Truong (2011) preformed a simulation study examining several

second-order screening designs focusing on the design’s ability to correctly identify

active factors under a variety of conditions. The truth models used assumed both

factor sparsity and strong effect heredity.

Sparsity and heredity are two important principles considered during the devel-

opment of successful screening designs. The sparsity principle stems from the Pareto

principle which has led to an assumption in screening designs that only a small num-

ber of factors, factor sparsity, are significant in their contribution to an appropriate

polynomial model approximation of a system response. However, the degree to which

factor sparsity holds as the number of factors being investigated grows has been de-

bated. The term effect sparsity has been used to identify with the assumption that

instead of the number of active factors being relatively small in the polynomial model

approximation, the number of active effects is relatively small. As a result, it is

possible for the assumption of effect sparsity to hold while factor sparsity does not.

Heredity, either strong or weak, is another screening principle considered during

model selection. Strong heredity means that if a model includes a two-factor interac-

tion, then both its constituent main effects are also included in the model. Conversely,

weak heredity requires only one of the two constituent main effects be included in the

model.
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Dougherty et al. (2013b) examined the robustness of Definitive Screening Designs

(DSD) and Fractional Box-Behken Designs (FBBD), two second-order screening de-

signs, with respect to the assumptions of sparsity (factor or effect) and heredity

(strong or weak). Dougherty et al. (2013b) showed that regardless of the heredity

(weak or strong), sparsity (effect or factor), or noise level combination, the DSD is

robust in its ability to correctly identify active main effects. At lower noise levels,

the DSD performs favorably in identifying active two-factor interactions but as the

noise level increases the DSD performance suffers. Additionally the DSD had trouble

identifying active pure quadratic effects when two-factor interactions are present. As

a result, if the experimenter has a priori knowledge regarding the importance of a

particular factor, or that factor’s second-order effects, augmentation of the DSD could

reduce the correlation between a factors’ second-order effects without sacrificing too

much in the way of design run efficiency while maintaining the requirement for a

single design. Conversely, if the experimenter has a posteriori knowledge about a

particular factor or factors’ second-order effects, augmenting the DSD demonstrates

the feasibility of follow-up design runs for DSD.

The remainder of this paper is organized as follows, Section 4.2 briefing discusses

the literature relevant to second-order screening designs while Section 4.3 focuses

on the Definitive Screening Designs generation and augmentation. In Section 4.4,

we present a side-by-side comparison of the Definitive Screening Design examined in

Dougherty et al. (2013b) with an augmented design focusing on improved robustness

to the assumptions of heredity and sparsity and significant second-order factor iden-

tification. Section 4.5 examines the effect of replicating the analysis on the designs’

ability to identify important factors of interest and Section 4.6 concludes the article.
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4.2 Second Order Screening Designs

Initial attempts at identifying second-order screening designs relied upon the de-

sign’s projection capacity. When the factor sparsity principle holds any regular frac-

tional factorial design of resolution R, projects onto any subset of R− 1 factors as a

full factorial. For example, a 23−1
III design (R = 3) can project into a 22 design (Myers

and Anderson-Cook, 2009). This projection property extends to nonregular designs

like the Plackett-Burman designs discussed in Lin and Draper (1992) and Wang and

Wu (1995).

Cheng and Wu (2001), hereafter referred to as CW, studied three orthogonal array

(OA) designs (OA(18, 37), OA(27, 38), and OA(36, 312)). The OA(N, 3k) connotation

shows the design’s number of runs N and number of factors k. In contrast to 3n−k

designs which have defining contrast subgroups to describe the design structure, the

OA(N, 3k) designs studied by CW required computer search to classify the possible

projected designs.

Because a design can project onto many different combinations of factors, CW

developed a projection-efficiency criterion to compare designs based upon (1) the

number of eligible projected designs and (2) the estimation efficiency for eligible

projected designs determined by the ratio of each designs D− and G−efficiences

(Cheng and Wu, 2001). Eligible designs are designs to fit a second-order model and

the D− and G−efficiences, denoted Deff and Geff , respectively, criteria compare the

performance of a design against a corresponding optimal design (Myers and Anderson-

Cook, 2009).

Under the assumptions of factor sparsity and strong heredity, CW introduced

a two-stage analysis method. The first stage consisted of performing a main effect

factor screening analysis and the second stage involved fitting a second-order model

with the identified main effects from the first stage. The key linkage between stage
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one and two was the ability to project the initial larger factor space onto a smaller

factor space capable of fitting a second-order model. Unfortunately, the designs CW

studied have no guarantee as to their ability to project down to a specific subset of

the original factors and no flexibility in modifying the number of design runs.

Improving on the designs of CW, Xu et al. (2004), hereafter referred to by XCW,

proposed a combinatorial method for constructing new and efficient OA designs and a

design selection approach based upon a projection aberration criterion which combines

the generalized word-length pattern of the generalized minimum aberration criterion

(Xu and Wu, 2001) for factor screening and the projection-efficiency criteria (Cheng

and Wu, 2001) for interaction detection. XCW assessed the projection performance

of three combinatorially non-isomorphic OA(18, 37)s and three combinatorially non-

isomorphic OA(27, 313)s. Their three-step approach involves: (1) screening out poor

orthogonal arrays for factor screening using the generalized word-length pattern, (2)

applying the projection aberration criterion to select a best design from step 1, and

(3) determining the best level permutations of the design from step 2 to improve de-

sign projection eligibility and estimation efficiency under the second-order polynomial

model.

Ye et al. (2007), hereafter referred to as YTL, also examined 3-level 18-run and

27-run orthogonal designs; however, in addition to considering the projection proper-

ties of designs, their design choices were based on both model estimation and model

discrimination criteria. The two model estimation criteria employed examine the pro-

portion of estimable models, Estimation Capacity (EC), and average D−efficiency of

all models, Information Capacity (IC). YTL employed two of the six non-Bayesian

criteria, Average Expected Prediction Differences (AEPD) and Minimum Maximum

Prediction Difference (MMPD), proposed by Jones et al. (2007) for model discrimi-

nation.
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While previous work focused primarily on the designs projection capacity, Ed-

wards and Truong (2011) applied Jones and Nachtsheim (2011b) method for finding

efficient designs with minimal aliasing between main effects and two-factor interac-

tions. Deemed MA designs, Edwards and Truong (2011) constructed 18, 27, and

30-run designs for simultaneous screening and response surface optimization for k =

4 to 7, k = 4 to 13, and k = 6 to 14 factors, respectively, by minimizing the sum

of squares of the elements of the alias matrix, A, subject to a lower bound on the

primary model D−efficiency. Edwards and Truong (2011) compared the 27-run OAs

of XCW and YTL with MA designs in terms of D-efficiency of projection and, via

a simulation study, the proportion of active factors declared significant (Power 1) as

well as the proportion of simulations in which only the true active factors are declared

significant (Power 2). Although ranked last in terms of D-efficiency, the MA designs

showed superior performance in their ability to detect active factors (Edwards and

Truong, 2011).

For simplicity, the CW, XCW, YTL, and MA designs use linear and quadratic

main-effects only analysis for factor screening but the Bayesian approaches of Box

and Meyer (1993) or Chipman et al. (1997) can also be used to screen for significant

factors outside of main effects. However, these methods are not readily available in

statistical software packages and are computationally intensive procedures, thus likely

making their use impractical (Edwards and Truong, 2011). Unfortunately, as shown

by Truong (2010), if the strong heredity principle fails to hold important effects can

be missed leading to a misspecified second-order polynomial model.

Edwards and Mee (2011) introduced the spherical FBBD aimed at overcoming

the projection deficiencies and main/quadratic effect only analysis issues found in

the CW/XCW/YTL/MA designs. The FBBD provide the ability to explore inter-

actions during the screening stage and to fit second-order models via a backward
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elimination analysis strategy to each of the (k − 1)-factor projections. In contrast to

the CW/XCW/YTL/MA designs, Edwards and Mee (2011) assumed an effect spar-

sity vice factor sparsity model and searched for designs having larger factor eligible

projections than the CW/XCW/YTL/MA designs by taking subsets of the two-level

fractional factorial designs which compose a BBD. While FBBDs require more runs

than CW/XCW/YTL/MA designs, their ease of construction and aliasing structure

facilitate an analysis strategy which cannot be applied to the CW/XCW/YTL/MA

designs.

Jones and Nachtsheim (2011a) introduced a class of three-level designs referred to

as Definitive Screening Designs (DSD) where main effects are not biased by second-

order effects and all quadratic effects are estimable. For k ≥ 6, the DSD can project

down to a full quadratic model in any three factors.

4.3 Definitive Screening Design Augmentation

Jones and Nachtsheim (2011a) used a computerized search algorithm to create

the DSD, with 2k + 1 runs to investigate k factors. The DSD consist of k fold-over

pairs for k factors and a single center point. The search algorithm forces each run

to maintain a single factor at its center point while forcing the remaining factors

to their extremes (±1). The DSD is constructed using a variant of the coordinate

exchange algorithm of Meyer and Nachtsheim (1995) to maximize the determinant

of the information matrix of the main effects model while maintaining the desired

design structure.

To guard against local maxima, Jones and Nachtsheim (2011a) use multiple ran-

dom starting designs for each k-factor design; however Xiao et al. (2012) demonstrate

a method for generating global optimum DSD for an even value of k through the

use of conference matrices. Table 28 shows the nine-factor DSD generated by JMP
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10. JMP 10 uses the conference matrices method of Xiao et al. (2012) even when k

is odd by producing a DSD for k + 1 factors and removing the k + 1 column factor

settings. As a result when k is odd, the DSD has 2k + 3 runs. When k is even, the

DSD maintains the 2k+1 number of runs original proposed by Jones and Nachtsheim

(2011a).

Table 28. Nine-Factor Definitive Screening Design (DSD)

A B C D E F G H J

0 1 1 1 1 1 1 1 1
0 -1 -1 -1 -1 -1 -1 -1 -1
1 0 -1 -1 -1 -1 1 1 1
-1 0 1 1 1 1 -1 -1 -1
1 -1 0 -1 1 1 -1 -1 1
-1 1 0 1 -1 -1 1 1 -1
1 -1 -1 0 1 1 1 1 -1
-1 1 1 0 -1 -1 -1 -1 1
1 -1 1 1 0 -1 -1 1 -1
-1 1 -1 -1 0 1 1 -1 1
1 -1 1 1 -1 0 1 -1 1
-1 1 -1 -1 1 0 -1 1 -1
1 1 -1 1 -1 1 0 -1 -1
-1 -1 1 -1 1 -1 0 1 1
1 1 -1 1 1 -1 -1 0 1
-1 -1 1 -1 -1 1 1 0 -1
1 1 1 -1 -1 1 -1 1 0
-1 -1 -1 1 1 -1 1 -1 0
1 1 1 -1 1 -1 1 -1 -1
-1 -1 -1 1 -1 1 -1 1 1
0 0 0 0 0 0 0 0 0

The 2k + 1 or 2k + 3 runs for when k is even or odd, respectively, provide a

sufficient number of degrees of freedom for estimates of the intercept, all k main

effects, and all k pure quadratic effects. However, Dougherty et al. (2013b) showed

when both two-factor interactions and pure-quadratic effects are active, regardless of

heredity (strong or weak) or sparsity (factor or effect), the standard DSDmay not have

enough degrees of freedom to decouple the correlation between two-factor interactions
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and pure-quadratic effects. As a result, the DSD when used as a single experimental

design is susceptible to making Type-II errors particularly with regards to active

pure-quadratic effects. Because the DSD is very run efficient when compared to other

second-order screening designs, augmenting the original DSD to improve detection of

active quadratic effects (both two-factor interactions and pure-quadratic) is desirable.

If the experimenter has a priori knowledge regarding the importance of a par-

ticular factor or factors’ second-order effects, augmentation of the DSD, hereafter

referred to as DSD+, could reduce the correlation between a factor’s second-order ef-

fects without sacrificing too much in the way of design run efficiency while maintaining

the requirement for a single design. Conversely, if the experimenter has a posteriori

knowledge about a particular factor or factors’ second-order effects, augmenting the

DSD demonstrates the feasibility of follow-up design runs for DSD.

Common approaches to design augmentation to clarify model ambiguity involves

the augmentation of the design with runs specifically designed to de-alias a specific

alias chain or using complete or fractional foldovers of the design. Since the DSD

are basically already full foldover designs, using the foldover approach on DSD does

not reduce aliasing between second-order effects. Additionally, the alias chains for

DSD are very complex due to the nature of the design construction. Therefore an

alternative approach using a D-optimal strategy for selecting augmentation points is

employed.

Similar to Jones and Nachtsheim (2011a), a computerized search algorithm is used

to add k− 1 runs to the DSD. However, instead of the information matrix being only

a main effects model, the information matrix contains the main effects and the k− 1

two-factor interactions involving a particular factor. The DSD+ were constructed

using a variant of the coordinate exchange algorithm of Meyer and Nachtsheim (1995)

to maximize the determinant of the updated information matrix. Multiple random
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starting designs for each k−factor design were explored to guard against local maxima;

however, the generated designs were still not unique. Multiple designs were generated

which were equivalent based upon both D-optimal and I-efficient criteria; although,

as k increased the number of different designs decreased.

Table 29 shows the k = 9 factor DSD generated by JMP 10 plus k − 1 = 8

augmentation runs after updating the information matrix to include the 8 two-way

interactions involving factor A.

4.4 Case Comparison

Dougherty et al. (2013b) conducted an empirical study of the nine-factor definitive

screening design generated using conference matrices based on Xiao et al. (2012)

focusing on the design’s robustness to detect important effects in models exhibiting

different combinations of heredity and sparsity. Using Jones and Nachtsheim (2011a)

recommended analysis methodology, the cases and scenarios studied are reexamined

using the DSD+.

Jones and Nachtsheim (2011a) suggest performing a forward stepwise regression,

which considers all terms in a second-order model of k = 9 factors. With a p-value

of 0.1 to enter, effects are added into the second-order model while forcing a strong

heredity model. As such, when either two-factor interactions or pure-quadratic effects

are included in the model, the lower order terms must also be included.

Four cases were considered to represent different combinations of model heredity

(strong or weak) and sparsity (factor or effect). In addition, each model was examined

with four different noise levels scenarios; however, the noise level vector used for each

scenario was identical across each model for each design. The 21 and 29 treatment

combinations for the DSD and DSD+ designs are given in Tables 28 and 29, respec-

tively. Table 30 shows the simulated response values for the 16 combinations of case
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Table 29. Nine-Factor Augmented Definitive Screening Design (DSD+)

A B C D E F G H J

0 1 1 1 1 1 1 1 1
0 -1 -1 -1 -1 -1 -1 -1 -1
1 0 -1 -1 -1 -1 1 1 1
-1 0 1 1 1 1 -1 -1 -1
1 -1 0 -1 1 1 -1 -1 1
-1 1 0 1 -1 -1 1 1 -1
1 -1 -1 0 1 1 1 1 -1
-1 1 1 0 -1 -1 -1 -1 1
1 -1 1 1 0 -1 -1 1 -1
-1 1 -1 -1 0 1 1 -1 1
1 -1 1 1 -1 0 1 -1 1
-1 1 -1 -1 1 0 -1 1 -1
1 1 -1 1 -1 1 0 -1 -1
-1 -1 1 -1 1 -1 0 1 1
1 1 -1 1 1 -1 -1 0 1
-1 -1 1 -1 -1 1 1 0 -1
1 1 1 -1 -1 1 -1 1 0
-1 -1 -1 1 1 -1 1 -1 0
1 1 1 -1 1 -1 1 -1 -1
-1 -1 -1 1 -1 1 -1 1 1
0 0 0 0 0 0 0 0 0
1 -1 1 -1 -1 -1 -1 -1 -1
-1 1 1 1 1 -1 1 1 1
-1 -1 1 -1 -1 -1 -1 -1 1
-1 1 -1 -1 -1 -1 -1 1 -1
1 -1 1 1 1 1 -1 1 1
1 1 1 1 -1 1 1 1 -1
-1 -1 -1 1 1 -1 -1 -1 -1
1 1 1 -1 1 -1 1 1 1
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and noise level scenario for the original DSD runs and the eight additional runs for

the DSD+.

Case 1 data was simulated based on the model

yi = 2Ai − 1.5Ei + 2Gi − 3A2
i + 2.5E2

i − 4G2
i + 4AiEi + 3.5AiGi − 5EiGi + εi, (4.2)

thereby representing a response which exhibits factor sparsity and strong heredity

between active two-factor interactions or pure quadratic effects and main effects.

The model exhibits factor sparsity because only 3 of the 9 factors are active within

the 9 effects contained in the model.

Jones and Nachtsheim (2011a) perform forward stepwise regression with a p-value

of 0.1 to enter while forcing a strong heredity model. Table 31 shows the forward

stepwise regression steps for the Case 1 data for all four noise level scenarios of Table

30.

Since the “combined” option rule is used for the forward stepwise regression, the

inclusion of two-way interaction or pure quadratic effects result in the inclusion of

all the factors which comprise the two-way interaction or pure quadratic effects. For

example, when considering the original DSD Scenario 3, where εi ∼ N(0, 3), the EG

and H2 effects, which entered the regression model in steps 1 and 5, respectively,

would require the E, G, and H factors to also be in the model.

Case 2 data was simulated according to the model

yi = 2Ai − 1.5Ei + 2Gi + 4Ci − 3Hi + 2.5E2
i − 4GiHi + 3.5EiHi − 5CiGi + εi, (4.3)

to represent a response exhibiting effect sparsity and strong heredity between active

two-factor interactions or pure quadratic effects and their associated main effects.

The model exhibits effect sparsity vice factor sparsity because although over 50% of
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Table 31. Forward Stepwise Results: Case 1

Scenario
ε ∼ N(0, 1) ε ∼ N(0, 2) ε ∼ N(0, 3)

Design DSD DSD+ DSD DSD+ DSD DSD+
Step Effects Added
1 EG EG AG AG EG EG
2 AG AG EG EG AG AG
3 AE AE EJ AE AE AE
4 G2 G2 AE G2 DF H2

5 AJ AJ – DF H2 AH
6 DH GJ – CJ – BG
7 AD A2 – – – DE
8 F AD – – – FH
9 C CH – – – AF
10 – – – – – B2

the factors (5 of 9) are active only 9 of 54 total effects are active, not coincidentally

the same number as Case 1.

Table 32 provides Jones and Nachtsheim (2011a) forward stepwise regression using

the Case 2 response data associated with each design for all four noise level scenarios

in Tables 30.

Case 3 data was simulated according to the model

yi = 2Ai + 2Ei − 1.5A2
i + 2.5E2

i − 3.5AiEi + 4AiGi − 5EiGi + εi, (4.4)

thereby representing a response which exhibits factor sparsity and weak heredity

between active two-factor interactions or pure quadratic effects and main effects.

The model exhibits factor sparsity because only 3 of the 9 factors are active within

the 7 effects contained in the model. Since not all factors, which comprise the two-

factor interactions, are present as a main effect, the model exhibits weak heredity. For

instance, although factor G is significant within two two-factor interactions, factor G

by itself is not significant.
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Table 32. Forward Stepwise Results: Case 2

Scenario
ε ∼ N(0, 1) ε ∼ N(0, 2) ε ∼ N(0, 3)

Design DSD DSD+ DSD DSD+ DSD DSD+
Step Effects Added
1 CG CG C2 CG C2 CG
2 GH GH GH GH E2 GH
3 EH EH CG EH DH EH
4 A A CJ AE A2 A2

5 E2 E2 A H2 DG DE
6 J2 J2 GJ DF AF E2

7 DH DH – DE – AH
8 CF CH – BJ – AE
9 – CD – – – CF
10 – CJ – – – –
11 – D2 – – – –

Table 33 provides Jones and Nachtsheim (2011a) forward stepwise regression using

the Case 3 response data associated with each design for all four noise level scenarios

in Tables 30.

Table 33. Forward Stepwise Results: Case 3

Scenario
ε ∼ N(0, 1) ε ∼ N(0, 2) ε ∼ N(0, 3)

Design DSD DSD+ DSD DSD+ DSD DSD+
Step Effects Added
1 AE EG AE AE EG EG
2 BF AG CH AG AG AG
3 J2 AE EJ EG AE AE
4 A2 E2 J2 D2 DF –
5 FH J2 E2 AF H –
6 DJ CE – DF AF –
7 E2 – – BE – –

Case 4 data was simulated according to the model

yi = 2Ai − 1.5Ei + 2Gi − 3H2
i + 2.5E2

i + 4AiCi + 3.5EiHi − 5CiGi − 4GiHi + εi (4.5)
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to represent a response which exhibits effect sparsity and weak heredity between

active two-factor interactions or pure quadratic effects and main effects.

Table 34 provides Jones and Nachtsheim (2011a) forward stepwise regression using

the Case 4 response data associated with each design for all four noise level scenarios

in Tables 30.

Table 34. Forward Stepwise Results: Case 4

Scenario
ε ∼ N(0, 1) ε ∼ N(0, 2) ε ∼ N(0, 3)

Design DSD DSD+ DSD DSD+ DSD DSD+
Step Effects Added
1 GH GH GH AC GH GH
2 AH CG AE CG AH CG
3 AF AC EG EH DE AC
4 EF EH HJ GH AD EH
5 G2 J2 E2 AE DG DE
6 AC E2 J2 DF FH A2

7 DF H2 – BH A2 E2

8 J EJ – – – AH
9 – FH – – – FJ
10 – CD – – – –
11 – EF – – – –
12 – DE – – – –

Tables 35, 36, 37, and 38 show which effects from Cases 1 through 4’s four different

noise level scenarios were properly identified, incorrectly identified (Type I error), and

not identified (Type II error), for both the DSD and DSD+ based upon Jones and

Nachtsheim (2011a) suggested analysis methodology.

In all four Cases, regardless of noise level, the DSD+ performance in identifying

active effects met or exceeded the DSD performance. However, similar to the DSD,

the DSD+ was still susceptible to increased Type II errors as the noise level increased.

Fortunately, the DSD+ was more robust to the heredity (strong or weak) or sparsity

(factor or effect) assumption than the DSD. When comparing strong heredity to weak

heredity for DSD, the DSD performed better when strong heredity was exhibited,
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particularly when effect sparsity was present. In contrast, the DSD+ performed

equally well under the heredity assumption. With regards to the sparsity assumption,

the DSD+ showed better performance under effect sparsity than factor sparsity which

was counter to the DSD. However, the DSD+ performance under factor sparsity

assumption was still better than the DSD. Interestingly, all the Type II errors across

all Scenarios and Cases made by the DSD+ involved not identifying active pure-

quadratic effects.

Table 35. Second Order Screening Design Results: Case 1

Strong Heredity, Factor Sparsity Model: Rep 1
2A− 1.5E + 2G− 3A2 + 2.5E2 − 4G2 + 4AE + 3.5AG− 5EG+ ε

Scenario DSD DSD+

ε ∼ N(0, 1) Identified A,E,G,G2, AE,AG,EG A,E,G,A2, G2, AE,AG,EG
Type I errors C,D, F,H, J, AD,AJ,DH C,D,H, J, AD,AJ,CH,GJ
Type II errors A2, E2 E2

ε ∼ N(0, 2) Identified A,E,G,AE,AG,EG A,E,G,G2, AE,AG,EG
Type I errors J,EJ C,D, F, J, CJ,DF
Type II errors A2, E2, G2 A2, E2

ε ∼ N(0, 3) Identified A,E,G,AE,AG,EG A,E,G,AE,AG,EG
Type I errors D,F,H,H2, DF B2, D2, AH,BG,DG
Type II errors A2, E2, G2 A2, E2, G2

4.5 Analysis Replication Results

In order to insure the increased performance exhibited by the DSD+ over the DSD

was not limited to a single instance, the response data was replicated four additional

times. Table 39 displays the average percentage of all active effects, second-order

effects, and pure-quadratic effects correctly identified from five replications of all four

Cases and three Scenarios. For instance, Case 3 (Weak Heredity, Factor Sparsity

Model), Scenario 1 (ε ∼ N(0, 1)) shows on average the DSD correctly identified

80% of the active effects in model, 72% of the active second-order effects (two-way

interactions and pure-quadratic effects), and 50% of the active pure-quadratic effects.
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Table 36. Second Order Screening Design Results: Case 2

Strong Heredity, Effect Sparsity Model: Rep 1
2A− 1.5E + 2G+ 4C − 3H + 2.5E2 − 5CG+ 3.5EH − 4GH + ε

Scenario DSD DSD+

ε ∼ N(0, 1) Identified A,E,C,G,H,E2, CG, A,E,C,G,H,E2, CG,
EH,GH EH,GH

Type I errors D,F, J, J2, CF,DH D, J,D2, J2, CD,CH,CJ,DH
Type II errors NONE NONE

ε ∼ N(0, 2) Identified A,C,G,H,CG,GH A,E,C,G,H,CG,EH,GH
Type I errors J, C2, CJ,GJ B,D, F, J,H2, AE,BJ,DE,DF
Type II errors E,E2, EH E2

ε ∼ N(0, 3) Identified A,E,C,G,H,E2 A,E,C,G,H,E2, CG,EH,GH
Type I errors D,F,A2, C2, AF,DG,DH D,F,A2, AE,AH,CF,DE
Type II errors CG,EH,GH NONE

Table 37. Second Order Screening Design Results: Case 3

Weak Heredity, Factor Sparsity Model: Rep 1
2A+ 2E − 1.5A2 + 2.5E2 − 3.5AE + 4AG− 5EG+ ε

Scenario DSD DSD+

ε ∼ N(0, 1) Identified A,E,A2, E2, AE A,E,E2, AE,AG,EG
Type I errors B,D, F,H, J, C,G, J, J2, CE

J2, BF,DJ, FH
Type II errors AG,EG A2

ε ∼ N(0, 2) Identified A,E,E2, AE A,E,AE,AG,EG
Type I errors C,H, J, J2, CH,EJ B,D, F,G,D2, AF,BE,DF
Type II errors A2, AG,EG A2, E2

ε ∼ N(0, 3) Identified A,E,AE,AG,EG A,E,AE,AG,EG
Type I errors D,F,G,H,AF,DF G
Type II errors A2, E2 A2, E2

85



Table 38. Second Order Screening Design Results: Case 4

Weak Heredity, Effect Sparsity Model: Rep 1
2A− 1.5E + 2G+ 2.5E2 − 3H2 + 4AC − 5CG+ 3.5EH − 4GH + ε

Scenario DSD DSD+

ε ∼ N(0, 1) Identified A,E,G,AC,GH A,E,G,E2, H2, AC,CG,EH,GH
Type I errors C,D, F,H, J,G2, C,D, F,H, J, J2,

AF,AH,DF,EF CD,DE,EF,EJ, FH
Type II errors E2, H2, CG,EH NONE

ε ∼ N(0, 2) Identified A,E,G,E2, GH A,E,G,AC,CG,EH,GH
Type I errors H, J, J2, AE,EG,HJ B,C,D, F,H,AE,BH,DF
Type II errors H2, AC,CG,EH E2, H2

ε ∼ N(0, 3) Identified A,E,G,GH A,E,G,E2, AC,CG,EH,GH
Type I errors D,F,H,A2, AD,AH, C,D, F,H, J, A2,

DE,DG,FH AH,DE, FJ
Type II errors E2, H2, AC,CG,EH H2

Additionally, Table 39 displays the average number of Type I errors made. Overall,

the percentages show the DSD+ outperforms the DSD with regards to identifying

active effects and their various subsets across the board with little to no increase in

Type I errors. However, when the noise level increases neither the DSD nor the DSD+

are consistently finding the active pure-quadratic effects. The individual replication

results are found in Tables 40 through 55 in the Appendix.

4.6 Conclusions

For a second-order polynomial model, if a factor screening design is not used, a

design must contain enough degrees of freedom to estimate all effects. For k factors

this equates to (k+1)(k+2)
2

design runs. As k increases, the number of required runs will

quickly exceed the number of available runs provided to an experimenter, particularly

within the DOD testing realm. As such as k increases, a screening design must

be employed while maintaining the ability to estimate a second-order polynomial

model when constraints dictate a single experiment. Jones and Nachtsheim (2011a)
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Table 39. Second Order Screening Design Results: Average

Strong Heredity, Factor Sparsity Model: 5 Rep Avg
Scenario DSD DSD+
ε ∼ N(0, 1) Identified 67%, 50%, 20% 91%, 87%, 73%

Type I errors 9.6 10.6
ε ∼ N(0, 2) Identified 58%, 37%, 20% 84%, 77%, 53%

Type I errors 7.4 5.6
ε ∼ N(0, 3) Identified 51%, 33%, 27% 62%, 43%, 13%

Type I errors 6.4 4.8

Strong Heredity, Effect Sparsity Model: 5 Rep Avg
Scenario DSD DSD+
ε ∼ N(0, 1) Identified 98%, 95%, 80% 98%, 95%, 80%

Type I errors 6.6 7.6
ε ∼ N(0, 2) Identified 78%, 55%, 20% 91%, 80%, 20%

Type I errors 4.0 5.4
ε ∼ N(0, 3) Identified 84%, 70%, 40% 93%, 85%, 40%

Type I errors 4.2 4.2

Weak Heredity, Factor Sparsity Model: 5 Rep Avg
Scenario DSD DSD+
ε ∼ N(0, 1) Identified 80%, 72%, 50% 94%, 92%, 80%

Type I errors 9.8 10
ε ∼ N(0, 2) Identified 60%, 44%, 20% 77%, 68%, 20%

Type I errors 8.0 7.0
ε ∼ N(0, 3) Identified 51%, 32%, 0% 77%, 68%, 20%

Type I errors 7.4 4.6

Weak Heredity, Effect Sparsity Model: 5 Rep Avg
Scenario DSD DSD+
ε ∼ N(0, 1) Identified 49%, 23%, 0% 93%, 90%, 70%

Type I errors 10.6 11.2
ε ∼ N(0, 2) Identified 47%, 23%, 10% 84%, 77%, 30%

Type I errors 8.4 7.0
ε ∼ N(0, 3) Identified 44%, 20%, 10% 82%, 73%, 20%

Type I errors 7.6 6.6

Note: Identified percentages correspond to percentage of active effects,
second-order effects, and pure quadratic effects.
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proposed the economical three-level DSD for screening quantitative factors in the

presence of active second-order effects. Dougherty et al. (2013b) showed the DSD

were effective in identifying active main effects regardless of the heredity and sparsity

assumption but lacked the power to differentiate between active second-order effects

when both two-factor interactions and pure-quadratic effects are active. We introduce

a way to augment the DSD, deemed DSD+, with k − 1 runs which increased the

detection performance of active second-order effects involving a particular factor of

interested. The k − 1 additional runs can be run as part of a single experiment with

the original DSD if the experimenter has a priori knowledge or as part of a follow-on

experiment based upon a posteriori knowledge. Furthermore, while the additional

runs are optimized for two-factor interactions, the impact of adding additional center

point runs on identifying active pure-quadratic effects requires further investigation.

While the k−1 runs are associated with the k−1 two-factor interactions of a single

factor of interest in a k factor experiment, the manner in which the DSD is augmented

can easily be extended to additional factors. For instance, the DSD can be augmented

with k− 1+k− 2 = 2k− 3 runs for all the two-factors interactions of two factors and

so on until a total of (k)(k−1)
2

runs are added for all the two-factor interactions in a k

factor experiment. As such, DSD can be tailored with augmentation runs which take

the DSD from the standard 2k + 1 runs all the way to (k+1)(k+2)
2

runs for a saturated

second-order design.
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Appendix

Table 40. Second Order Screening Design Results: Case 1

Strong Heredity, Factor Sparsity Model: Rep 2
2A− 1.5E + 2G− 3A2 + 2.5E2 − 4G2 + 4AE + 3.5AG− 5EG+ ε

Scenario DSD DSD+

ε ∼ N(0, 1) Identified A,E,G,A2, EG A,E,G,A2, E2, G2, AE,AG,EG
Type I errors B,C,D, F,B2, D2, B, C, F,H, F 2, BE,

BE,BF,CE,DF BF,CG,EH,FH
Type II errors E2, G2, AE,AG NONE

ε ∼ N(0, 2) Identified A,E,G,EG A,E,G,A2, G2, AE,AG,EG
Type I errors B,D, F, J, F 2, J2, D, J, J2, DG,DJ

AF,BD,BF,DJ, FG
Type II errors A2, E2, G2, AE,AG E2

ε ∼ N(0, 3) Identified E,E2 A,E,G,AE,AG,EG
Type I errors C,H, J, CH,EJ B, F,BF
Type II errors A,G,A2, G2, AE, A2, E2, G2

AG,EG
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Table 41. Second Order Screening Design Results: Case 2

Strong Heredity, Effect Sparsity Model: Rep 2
2A− 1.5E + 2G+ 4C − 3H + 2.5E2 − 5CG+ 3.5EH − 4GH + ε

Scenario DSD DSD+

ε ∼ N(0, 1) Identified A,E,C,G,H,E2, A, E, C,G,H,E2,
CG,EH,GH,EH,GH CG,EH,GH,EH,GH

Type I errors B,F,AF,BC,BG B,D, F, J, AH,
BE,DJ,EG, FG

Type II errors NONE NONE

ε ∼ N(0, 2) Identified A,E,C,G,H A,E,C,G,H,CG,EH,GH
Type I errors B,D, J,AD,BE,CE, B,D,AB,AD,BD,DG

CH,DG,EJ
Type II errors E2, CG,EH,GH E2

ε ∼ N(0, 3) Identified E,C,G,H,CG,EH,GH A,E,C,G,H,CG,EH,GH
Type I errors CH A2, CH
Type II errors A,E2 E2

Table 42. Second Order Screening Design Results: Case 3

Weak Heredity, Factor Sparsity Model: Rep 2
2A+ 2E − 1.5A2 + 2.5E2 − 3.5AE + 4AG− 5EG+ ε

Scenario DSD DSD+

ε ∼ N(0, 1) Identified A,E,A2, E2, AE,AG,EG A,E,A2, E2, AE,AG,EG
Type I errors B,C, F,G,BE,CE,CF B,C, F,G,H, J, J2,

BE,BF,CG, FH
Type II errors NONE NONE

ε ∼ N(0, 2) Identified A,E,A2, AE,AG,EG A,E,A2, AE,AG,EG
Type I errors B,D,G, J,B2, BD,EJ D,G, J, J2, DG
Type II errors E2 E2

ε ∼ N(0, 3) Identified A,E,AE,AG,EG A,E,AE,AG,EG
Type I errors C,G,H,CH B,F,G,BF
Type II errors A2, E2 A2, E2
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Table 43. Second Order Screening Design Results: Case 4

Weak Heredity, Effect Sparsity Model: Rep 2
2A− 1.5E + 2G+ 2.5E2 − 3H2 + 4AC − 5CG+ 3.5EH − 4GH + ε

Scenario DSD DSD+

ε ∼ N(0, 1) Identified A,E,G,EH,GH A,E,G,E2, H2,
AC,CG,EH,GH

Type I errors B,C, F,H,G2, AF, B,C, F,H,B2, AB,
AH,BE,CF,EF BC,BE,BG,CF

Type II errors E2, H2, AC,CG NONE

ε ∼ N(0, 2) Identified A,E,G,GH A,E,G,E2,
AC,CG,EH,GH

Type I errors B,C,D, F,H, J,D2, B, C,D,H, J,G2,
AB,AJ,BF,CE AB,AH,BD,BG,BH

Type II errors E2, H2, AC,CG,EH H2

ε ∼ N(0, 3) Identified A,E,G A,E,G,AC,CG,EH,GH
Type I errors B,D,AD,BD,BE C,H,CH
Type II errors E2, H2, AC,CG,EH,GH E2, H2

Table 44. Second Order Screening Design Results: Case 1

Strong Heredity, Factor Sparsity Model: Rep 3
2A− 1.5E + 2G− 3A2 + 2.5E2 − 4G2 + 4AE + 3.5AG− 5EG+ ε

Scenario DSD DSD+

ε ∼ N(0, 1) Identified A,E,G,AE,AG,EG A,E,G,G2, AE,AG,EG
Type I errors B,C,D, F,H, J, J2, C,D, F,H, J,

AB,DH,EJ AH,CF
Type II errors A2, E2, G2 A2, E2

ε ∼ N(0, 2) Identified A,E,G,G2, EG A,E,G,G2, AE,AG,EG
Type I errors B,D, F,H,B2, AH, B,C,D, F,AF,BC,

BF,EF,EH CD,CF
Type II errors A2, E2, AE,AG A2, E2

ε ∼ N(0, 3) Identified A,E,G,A2, G2, EG A,E,G
Type I errors B,C,D, F,H, J,BF, B, F,H, J, J2, BJ,EH,

CJ,DF,EH EJ, FG
Type II errors E2, AE,AG A2, E2, G2, AE,AG,EG
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Table 45. Second Order Screening Design Results: Case 2

Strong Heredity, Effect Sparsity Model: Rep 3
2A− 1.5E + 2G+ 4C − 3H + 2.5E2 − 5CG+ 3.5EH − 4GH + ε

Scenario DSD DSD+

ε ∼ N(0, 1) Identified A,E,C,G,H,E2, CG, A,E,C,G,H,E2, CG,
EH,GH EH,GH

Type I errors B,D, F,BH,CD,FG B,D, F, J,G2, AB,AJ, FG
Type II errors NONE NONE

ε ∼ N(0, 2) Identified A,E,C,G,H,CG, A,E,C,G,H,CG,
EH,GH EH,GH

Type I errors F,AF B,D, F,G2, AE,AF,
AH,BF,DH

Type II errors E2 E2

ε ∼ N(0, 3) Identified A,E,C,G,H,E2, CG, A,E,C,G,H,E2, CG,
EH,GH EH,GH

Type I errors B,F, J, AB,CE,CF A2

Type II errors NONE NONE

Table 46. Second Order Screening Design Results: Case 3

Weak Heredity, Factor Sparsity Model: Rep 3
2A+ 2E − 1.5A2 + 2.5E2 − 3.5AE + 4AG− 5EG+ ε

Scenario DSD DSD+

ε ∼ N(0, 1) Identified A,E,AE,AG,EG A,E,E2, AE,AG,EG
Type I errors D,F,G,H, J,D2, B, C,D, F,G,H, J,B2,

AJ,DH D2, AJ, CD,DG,FH,GJ
Type II errors A2, E2 A2

ε ∼ N(0, 2) Identified A,E,AE A,E,AE,AG,EG
Type I errors B,D, F,G, J,G2, B, C,D, F,G,B2, AC,

AD,BE,BF,DJ,EF AD,AF,BC,BF,DF
Type II errors A2, E2, AG,EG A2, E2

ε ∼ N(0, 3) Identified A,E A,E,E2, AE,AG,EG
Type I errors B,C,D, F,G,H, J,B2, G,H,EH

F 2, J2, AD,AJ,CE,DH
Type II errors A2, E2, AE,AG,EG A2
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Table 47. Second Order Screening Design Results: Case 4

Weak Heredity, Effect Sparsity Model: Rep 3
2A− 1.5E + 2G+ 2.5E2 − 3H2 + 4AC − 5CG+ 3.5EH − 4GH + ε

Scenario DSD DSD+

ε ∼ N(0, 1) Identified A,E,G,GH A,E,G,AC,CG,EH,GH
Type I errors C,D, F,H,AD,AH, B,C,D, F,H, J,G2,

CE,DE,DG AB,AG,AJ,DJ, FJ,GJ
Type II errors E2, H2, AC,CG,EH E2, H2

ε ∼ N(0, 2) Identified A,E,G A,E,G,
AC,CG,EH,GH

Type I errors B,C,D, F,D2, AG, C,H, J, J2

BD,BF,CE,CF, FG
Type II errors E2, H2, AC,CG,EH,GH E2, H2

ε ∼ N(0, 3) Identified A,E,G,AC,CG,EH,GH A,E,G,AC,CG,EH,GH
Type I errors B,C,D, F,H, J, B, C, F,H,AB,AH,

AF,CE,DJ BF,CF,EF, FH
Type II errors E2, H2 E2, H2

Table 48. Second Order Screening Design Results: Case 1

Strong Heredity, Factor Sparsity Model: Rep 4
2A− 1.5E + 2G− 3A2 + 2.5E2 − 4G2 + 4AE + 3.5AG− 5EG+ ε

Scenario DSD DSD+

ε ∼ N(0, 1) Identified A,E,G,E2, AG,EG A,E,G,E2, G2, AE,AG,EG
Type I errors B,C,D, F,H, J, AD, B,C,D, F,H, J, F 2, H2,

BF,BG,CH,EJ, FJ AC,BC,CD,CG,DE,EH
Type II errors A2, G2, AE A2

ε ∼ N(0, 2) Identified A,E,G,G2, AE,EG A,E,G,G2, AE,AG,EG
Type I errors B,D, F,AB,BF,DF B, F,H,BF, FH,GH
Type II errors A2, E2, AG A2, E2

ε ∼ N(0, 3) Identified A,E,G,G2, AG A,E,G,E2, AG,EG
Type I errors B,F,BE,BF J,AJ,GJ
Type II errors A2, E2, AE,AG A2, G2, AE
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Table 49. Second Order Screening Design Results: Case 2

Strong Heredity, Effect Sparsity Model: Rep 4
2A− 1.5E + 2G+ 4C − 3H + 2.5E2 − 5CG+ 3.5EH − 4GH + ε

Scenario DSD DSD+

ε ∼ N(0, 1) Identified A,E,C,G,H,CG,EH,GH A,E,C,G,H,CG,EH,GH
Type I errors B,D, F, J, A2, J2, BG,EG, FG J,A2, G2, J2, AC
Type II errors E2 E2

ε ∼ N(0, 2) Identified A,E,C,G,H,CG,EH,GH A,E,C,G,H,CG,EH,GH
Type I errors B NONE
Type II errors E2 E2

ε ∼ N(0, 3) Identified A,E,C,G,H,CG,EH,GH A,E,C,G,H,CG,EH,GH
Type I errors F,AF,EF, FH D,F,CD, FH
Type II errors E2 E2

Table 50. Second Order Screening Design Results: Case 3

Weak Heredity, Factor Sparsity Model: Rep 4
2A+ 2E − 1.5A2 + 2.5E2 − 3.5AE + 4AG− 5EG+ ε

Scenario DSD DSD+

ε ∼ N(0, 1) Identified A,E,E2, AE,AG,EG A,E,A2, E2, AE,AG,EG
Type I errors B,C,D, F,H, J, B, C,D, F,G,H, J,B2,

J2, AC,BD,BJ C2, G2, J2, BG,CE,DF,
EH,EJ,HJ

Type II errors A2 NONE

ε ∼ N(0, 2) Identified A,E,AE A,E,AE,AG,EG
Type I errors B,F,H, J,B2, J2, AH,BF G,H,GH
Type II errors A2, E2, AG,EG A2, E2

ε ∼ N(0, 3) Identified A,E,AE A,E,AE,AG,EG
Type I errors B,F,BE,BF F,G, J, J2, FJ,GJ
Type II errors A2, E2, AG,EG A2, E2
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Table 51. Second Order Screening Design Results: Case 4

Weak Heredity, Effect Sparsity Model: Rep 4
2A− 1.5E + 2G+ 2.5E2 − 3H2 + 4AC − 5CG+ 3.5EH − 4GH + ε

Scenario DSD DSD+

ε ∼ N(0, 1) Identified A,E,G,GH A,E,G,H2, AC,CG,EH,GH
Type I errors B,C,D, F,H, J,B2, C,D,H, J, A2, AD,

AD,AH,CD,DE,DG,GJ AH,CE,CJ
Type II errors E2, H2, AC,CG,EH E2

ε ∼ N(0, 2) Identified A,G,CG,GH A,E,G,AC,CG,EH,GH
Type I errors B,C,H, J, A2, AB,CJ C,D,H,AD,CD
Type II errors E,E2, H2, AC,EH E2, H2

ε ∼ N(0, 3) Identified A,E,E2 A,E,G,H2, AC,CG,EH,GH
Type I errors F,H,AF,AH, FH C,D, F,H,CD, FH
Type II errors G,H2, AC,CG,EH,GH E2

Table 52. Second Order Screening Design Results: Case 1

Strong Heredity, Factor Sparsity Model: Rep 5
2A− 1.5E + 2G− 3A2 + 2.5E2 − 4G2 + 4AE + 3.5AG− 5EG+ ε

Scenario DSD DSD+

ε ∼ N(0, 1) Identified A,E,G,AE,AG,EG A,E,G,A2, E2, G2,
AE,AG,EG

Type I errors B,C, F, J, B2, J2, CE,EJ B,C,D, F,H, J, C2, D2,
AB,AC,BJ,DE, FJ,HJ

Type II errors A2, E2, G2 NONE

ε ∼ N(0, 2) Identified A,E,G,A2, EG A,E,G,A2, E2, G2,
AE,AG,EG

Type I errors B,C,D, F, J, F 2, BF,CJ,DF C, F,AF
Type II errors E2, G2, AE,AG NONE

ε ∼ N(0, 3) Identified A,E,G,EG A,E,G,A2, AE,AG,EG
Type I errors C,D, J,D2, AJ, CE,CG,EJ D, J, J2, EJ
Type II errors A2, E2, G2, AE,AG E2, G2
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Table 53. Second Order Screening Design Results: Case 2

Strong Heredity, Effect Sparsity Model: Rep 5
2A− 1.5E + 2G+ 4C − 3H + 2.5E2 − 5CG+ 3.5EH − 4GH + ε

Scenario DSD DSD+

ε ∼ N(0, 1) Identified A,E,C,G,H,E2, CG,EH,GH A,E,C,G,H,E2, CG,EH,GH
Type I errors B,D, F, J,BD,CH, FG B,F, J, A2, AF,BC,BG,EJ
Type II errors NONE NONE

ε ∼ N(0, 2) Identified A,E,C,G,H,E2, CG,EH, A,E,C,G,H,E2, CG,EH,GH
Type I errors F,AC,CE,EF F,G2, AF
Type II errors GH NONE

ε ∼ N(0, 3) Identified A,E,C,G,H,CG,EH,GH A,E,C,G,H,CG,EH,GH
Type I errors J, J2, AJ B,D, J, J2, AE,BG,CD
Type II errors E2 E2

Table 54. Second Order Screening Design Results: Case 3

Weak Heredity, Factor Sparsity Model: Rep 5
2A+ 2E − 1.5A2 + 2.5E2 − 3.5AE + 4AG− 5EG+ ε

Scenario DSD DSD+

ε ∼ N(0, 1) Identified A,E,A2, AE,EG A,E,A2, E2, AE,AG,EG
Type I errors B,C,D, F,G, J, B, C, F,G, J,BJ, CF

B2, J2, BD,BF,CE
Type II errors E2, AG NONE

ε ∼ N(0, 2) Identified A,E,AE,AG,EG A,E,E2, AE,AG,EG
Type I errors C, F,G, J, F 2, AC,AJ,CF C, F,G,H,AF,CF,GH
Type II errors A2, E2 A2

ε ∼ N(0, 3) Identified A,E,AE A,E,A2, AE,AG,EG
Type I errors B,C, F,G, J,G2, BF,EJ,GJ B,C,G, J, J2, AB,BC,BG,EJ
Type II errors A2, E2, AG,EG E2
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Table 55. Second Order Screening Design Results: Case 4

Weak Heredity, Effect Sparsity Model: Rep 5
2A− 1.5E + 2G+ 2.5E2 − 3H2 + 4AC − 5CG+ 3.5EH − 4GH + ε

Scenario DSD DSD+

ε ∼ N(0, 1) Identified A,E,G,GH A,E,G,E2, H2, AC,CG,EH,GH
Type I errors B,C, F,H, J,B2, B, C,D, F,H, J,D2,

G2, AE,AF,AH,EF AF,BE,CE,DF,DH,FJ
Type II errors E2, H2, AC,CG,EH NONE

ε ∼ N(0, 2) Identified A,E,G,AC,CG A,E,G,E2, H2, AC,CG,EH,GH
Type I errors C, F, C2, G2, AF, CE, FG C, F,H,A2, G2, AF, CE
Type II errors E2, H2, EH,GH NONE

ε ∼ N(0, 3) Identified A,E,G A,E,G,AC,CG,EH,GH
Type I errors B,C,D, F, J,G2, C,H, J, J2, EG

AB,BD,BF,CE
Type II errors E2, H2, AC,CG,EH,GH E2, H2
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V. Nonlinear Screening Designs for Defense Testing: An

Overview and Case Study

5.1 Introduction

“Necessity is the Mother of Invention.” Plato is often credited with authoring

this quote, but whether he is the true author or not remains unknown. However, not

knowing the author does not diminish the meaning and impact this simple quote has

with regards to the situation the Department of Defense (DOD) and in particular

the Defense Acquisition Test and Evaluation community find themselves in today.

Available resources, whether they be personnel, budgets, or facilities, are continuing

to shrink. Meanwhile, acquisition efforts are reducing timelines, even though systems

are becoming increasingly more complex. As a result, testing methodologies which

optimize the employment of resources are gaining emphasis and acceptance.

In a 2010 memorandum, Dr. Gilmore provided key policy guidance on the use of

Design of Experiments (DOE) in OT&E. Furthermore the DOT&E Scientific Advisor

(SA), Dr. Catherine Warner, highlighted the fact that while DOE is a structured,

rigorous statistical tool for test planning and analysis, and it has been written about

extensively within the academic setting, there are still many questions regarding how

to apply DOE to T&E within DOD (Warner, 2011).

In April 2012, Dr. Steven Hutchison, Principal Deputy, Office of the Deputy As-

sistant Secretary of Defense for Developmental Test and Evaluation (DASD(DT&E)),

stated, “By applying scientific methods to the test design, we can not only achieve

great efficiencies, but we can significantly improve confidence in our results. The

Scientific Test and Analysis Techniques in Test & Evaluation Center of Excellence
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(STAT T&E COE) will provide a critical venue for enhancing the test design for DOD

acquisition programs.”

Finally, in July 2013, Dr. Gilmore published a best practices memorandum for

the statistical adequacy of operational test and evaluation (Gilmore, 2013). Included

as an attachment to the memo was a white paper of best practices. One of the

four identified test objectives was screen for important factors that affect system

performance. While an important characteristic of test, the included potentially

useful experimental designs focused just on linear effects.

This paper presents the use of design of experiments and response surface designs

in the area of second-order screening designs, particularly as applied to defense test-

ing. Extensions to existing designs are examined with respect to improvements in

robustness and applicability to defense testing. A wind tunnel case study to demon-

strate a viable use of a second-order screening design.

5.2 Background

Military systems, particularly aerodynamic systems, are complex. It is not unusual

for these systems to exhibit nonlinear behavior. Developmental testing may be tasked

to characterize the nonlinear behavior of such systems while being asked to reduce

the amount of testing accomplished.

The one-factor-at-a-time (OFAT) experimentation strategy consists of successively

varying each factor independently over its range while holding all the remaining fac-

tors at baseline settings. The OFAT method saturates the experimental design space

and provides the capacity to determine how each factor affects the response variable

while all other factors are held constant. An overwhelming disadvantage of the OFAT

strategy is that it does not consider any possible interaction between factors. Addi-

99



tionally, as Hill et al. (2011) point out, the OFAT strategy is not cost effective nor

does it control experimental uncertainty or produce minimum variance predictions.

Despite the disadvantages and deficiencies of implementing an OFAT experimen-

tation strategy, conventional wind tunnel tests, which are a critical factor in the

Developmental Test and Evaluation (DT&E) of aeronautical systems, are usually

conducted in a manner consistent with the OFAT methodology. Hill et al. (2011)

point out current high-performance military aircraft development programs require

up to 3700 wind tunnel test hours in the conceptual design phase and up to 18,500

hours in the development/validation phase. Such requirements become tenuous dur-

ing a time when the United States Air Force (USAF) and DOD are seeking reductions

in developmental schedules and budgetary requirements.

DOE, or experimental design, is a statistical technique used to organize an exper-

imental test or series of tests in a manner such that observed changes in an output

response can be attributed to systematic changes made to the input variables of a

process or system (Montgomery, 2013). While the designs are based upon statistical

techniques, the actual design forms vary greatly depending upon the form of the em-

pirical model used to represent the process or system response. Typically, first-order

polynomial models are used extensively in screening experiments while second-order

polynomial models are commonly used in modeling and optimization experiments.

When a system or process is new, screening designs are usually performed to de-

termine which of the many factors (if any) have a significant effect on the system

or process response. Screening designs usually assume a linear (main effects or main

effects plus interaction) response so as to not waste valuable resources when experi-

menters do not know much about the system or process being studied. The assump-

tion that the response is approximately linear for many factor screening experiments

is reasonable when a system or process is just starting to be studied. However, there
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are times when subject matter expertise or historical data indicates a second-order

polynomial response is more reasonable.

Traditionally, when a response is suspected of exhibiting second-order behavior,

experiments are conducted sequentially. First, screening for important factors is con-

ducted assuming a linear response in main effects and then follow-on experiments

focus on second-order models using those important factors identified in the screen-

ing experiment. However, there are times when conducting multiple experiments

sequentially is unrealistic due to time, budget, or other constraints. For instance,

within the agricultural field the time duration of the design can be exceedingly long

and/or within a manufacturing setting experimental preparation can be overly time-

consuming. Directly applicable to the DOD, Lawson (2003) points out fixed deadlines

for scale-up and production of prototype engineering designs may not allow the pos-

sibility of follow-up experimentation.

In these instances, it would be better, if not necessary, to perform factor screening

and response surface exploration on the same experiment vice conducting experiments

sequentially. This has significant implications for experimental screening designs.

Second-order screening designs are extremely important when working with new or

existing systems/technologies believed to exhibit nonlinear system responses so valu-

able resources will not be wasted using best guess and one-factor-at-a-time (OFAT)

approaches. In the following sections, we provide an overview of screening designs

and illustrate the use of a single augmented Definitive Screening Designs (DSD+)

for determining significant factors associated with transonic and supersonic subspace

wind tunnel testing data.
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5.3 Screening Designs Overview

Many experiments start by considering many factors, which in turn increases the

overall size and cost of the experiment. Since in reality no two experiments are exactly

the same, a multitude of screening designs are available for use depending upon any

number of variables. For the novice practitioner, the most obvious variables are the

number of factors being considered and the number of available experimental runs.

However, variables such as the range over which factors will be varied and the number

of distinct levels at which runs will be made are equally important. More importantly

are issues associated with whether or not follow-up experiments will be available, the

shape of the design region, the ease of which statistical analysis of data can be done

and subject matter expertise affect screening design selection. Lastly, design selection

depends greatly upon the form of the empirical model used to represent the process

or system response.

Traditionally, research has involved concepts like design resolution, minimum aber-

ration, power, the number of clear (non-confounded) effects, concepts like rotatability,

alphabetical-optimality, and prediction variance.

Resolution, generally denoted in roman numerals, is the measure of the degree of

complete confounding for main effects and interactions in a fractional factorial design.

The confounding characteristics of these design resolutions are:

• Res III: Main effects clear of other main effects, at least one main effect is

confounded with at least one two-way interactions.

• Res IV: Main effects are clear of two-way interactions, but at least one two-way

interaction is confounded with at least one other two-way interaction.
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• Res V: Main effects and two-way interaction are clear of any other main effect

or two-way interaction, but at least one two-way interaction is confounded with

at least one three-way interaction.

There are times however that different designs can possess the same resolution and

fractionation but have different confounding or aliasing structure. Fries and Hunter

(1980) proposed the concept of design aberration for regular two-level designs as a

means to differentiate between these designs. Since Fries and Hunter initial work, the

concept of minimum aberration criterion has been extended to two-level non-regular,

multilevel, and mixed-level fractional-factorial designs (Guo et al., 2009).

Optimal designs are typically assessed based upon specific criteria like providing

good estimation of model parameters or good prediction capacity within the design

region. Alphabetic-optimality refers to the family of design optimality criteria that

are characterized by a letter of the alphabet, currently A−, D−, G−, V−, or I−.

These alphabetical -optimality criteria drive what constitutes an optimal design. These

“optimal” designs are rather focused on a particular design characteristic. Two of

the most popular methods of assessing optimality are I− and D−optimality. Where

D−optimal designs focus on good model parameter estimates, and I−optimal designs

focus on good prediction capacity within the design region by focusing on the scaled

prediction variance. Since I− criteria are prediction-oriented and D− criteria are

parameter-oriented, they are mostly used for second-order and first-order designs,

respectively. For more on alphabetic-optimality, please see Chapter 8 in (Myers and

Anderson-Cook, 2009).

Screening designs usually assume a linear (main effects or main effects plus inter-

action) response so factors can be studied at two levels thereby conserving experimen-

tal resources. Popular experimental regular and nonregular designs used in screening

experiments are full and fractional 2-level factorial designs, Plackett-Burman, and
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supersaturated designs. Regular designs are designs constructed through defining

relations among its factors, whereas, nonregular designs lack such a defining relation.

The 2k Factorial Design consists of k factors each at only two levels and is a special

case of the full factorial design with 2k observations per replication. 2k designs have

many useful properties. In addition to being orthogonal, 2k designs are I−optimal for

fitting a first-order model or first-order model with interactions (Montgomery, 2013).

The 2k-type designs are widely used for factor screening as it provides the smallest

number of runs for independently estimating all main effects and interactions for k

factors.

The 2k−p Fractional Factorial Design uses a subset of the runs of the 2k Factorial

Design. Similar to the 2k Factorial Design, the 2k−p Fractional Factorial Designs

consists of k factors each at only two levels. However, the value of p specifies the

degree to which the design is fractionated, determined by 1/2p. Generally, the first

k − p independent columns are generated by the runs in the 2k−p design. In the

2k−p design, the first k − p columns are generated by the runs associated with the

2k−p full factorial design. The remaining p columns can be generated as interactions

of the first k − p columns (Wu and Hamada, 2011). Because the design generators

were determined by column interactions, the p factor effect estimates are aliased,

meaning the factor effects on the system response can not be estimated separately

from factor interactions. The degree to which the effects are aliased is given by the

design resolution.

Plackett and Burman (1946) developed nonregular two-level fractional factorial

designs which can study k = N − 1 variables in N runs, where N is a multiple of

4. If N = 2i for i ≥ 2 , PB designs are synonymous with 2k factorial designs. The

nonregular Plackett-Burman designs sacrifice a simple alias structure for better run

economy and projectivity when compared to regular 2k−p designs. Unfortunately,
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PB designs have complex alias structures. As a result, analysis of PB designs can

become complex. Hamada and Wu (1992) discuss methods for analyzing designs with

complex aliasing based upon the sparsity of effect and effect heredity principles.

Supersaturated designs are nonregular fractional factorial design where the num-

ber of factors k under investigation exceeds the number of available experimental

runs N . Since k > N − 1, the degrees of freedom within the design are insufficient to

estimate all the main effects and the design matrix cannot be orthogonal. Therefore

in order for supersaturated designs to useful as screening designs only a few factors

can be active. As such supersaturated designs are generally used when the number of

potential factors is large but few are believed to have actual effects (effect sparsity)

and either budget or time constraints limit the number of experimental runs. Some

care must be exercised in the selection of a SSD. Since SSD can not obtain orthog-

onality, the SSD could produce misleading results if the design departs considerably

from an orthogonal design. E(s2) gives an intuitive measure of nonorthogonality the

smaller, the better.

When the response is believed to possess significant curvature, each factor needs

at least three levels. If follow-on experiments are available, two-level regular designs

can be augmented with follow-on design runs to accommodate curvature. However

there are designs which are robust to the linear effect assumption such as the 3k or

3k−p fractional factorial design, the Central Composite Design (CCD), Box-Behnken

Design (BBD), and saturated/near-saturated Hoke, Hybrid, and Small Composite

Designs (SCD).

The 3k Factorial Design, which consists of k factors each at only three levels, is

a special case of the full factorial design with 3k observations per replication. The

addition of a third factor level over the 2k design allows the response to be modeled

as a quadratic function.
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The 3k−p Fractional Factorial Designs consists of k factors each at three levels.

The value of p again specifies the degree to which the design is fractionated, de-

termined by 1/3p. A general procedure for constructing a 3k−p fractional factorial

design is given by Montgomery (2013). Connor and Zelen (1959) and Xu (2005)

provide an extensive list of 3k−p designs. Unfortunately, especially as compared to

2k−p designs, the aliasing structure for 3k−p designs is very complex especially as the

level of fractioning increases. If effect interactions are not negligible, design results

can be difficult if not nearly impossible to interpret because of the partial aliasing of

two-degree-of-freedom components (Montgomery, 2013).

Box and Wilson (1951) introduced an alternative class of designs to the 3k factorial

designs. The Central Composite Designs (CCD) contain a 2k or 2k−p
V design, axial/star

runs, and center runs which are set at the middle of the factor range. The axial/star

runs are selected so as to maintain a rotatable or near-rotatable design so that the

variance of predicted response is constant (Montgomery, 2013). As such, the CCD

typically involve k factors at 5 levels per factor. The CCD are popular design because

of the sequential nature in which they can be implemented.

Box and Behnken (1960) developed a family of efficient rotatable/near-rotatable

spherical three-level designs suitable for fitting second-order (quadratic) response

models. In contrast to the CCD, the Box-Behnken design does not contain any

points at the vertices or face-center of the design but rather at the center of the edges

of the process space. As a result, the Box-Behnken designs avoid extreme values for

factor-level combinations which may be impossible to test due to cost or physical pro-

cess constraints (Montgomery, 2013). The BBD are formed by varying p parameters

in a full factorial manner while the remaining k − p parameters are kept steady at

the center factor level setting. Additionally, the BBD uses three to five center runs

to avoid singularity in the design matrix and to maintain favorable design qualities
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(Myers and Anderson-Cook, 2009). Overall, the design run requirements for both

the BBD and CCD are comparable. As a result, the benefit of employing a BBD

design over a CCD is not necessarily due to run efficiency but rather the factor level

combination location in the design space.

Through the years some of the original BBD have been improved upon in terms of

rotatability, average prediction variance,D− andG−efficiency (Nguyen and Borkowski,

2008). In addition, new Box-Behnken type designs with larger k (Mee, 2000) and dif-

fering orthogonally blocked solutions (Nguyen and Borkowski, 2008) than the original

BBD have been proposed. Most recently small Box-Behnken Designs (SBBD) have

been proposed which reduce the run size requirement of the original BBD by replacing

the full 2k factorial designs partly by 23−1
III designs and partly by full factorial designs

(Zhang et al., 2011). When compared to the original BBD, the SBBD possess smaller

D−efficiency values but the values are still relatively high (> 70%) for k ≤ 11 while

requiring fewer runs.

While reduced run designs like the CCD and the BBD provide more efficient

designs than the full model estimable designs 2k and 3k, these designs still can possess

far more design points than needed to estimate the second-order response effects.

As a result, the class of saturated or near-saturated designs have been developed.

Saturated or near-saturated designs are designs such that the number of design points

are equal to or near, but not less than, the number of terms in the design model.

Hoke (1974) presented a class of second-order designs for k = 3 to 6 factors at

3 levels based on saturated and near-saturated irregular fractions of the 3k factorial.

For each number of factors k, several versions of the Hoke designs exist consisting of

a mixture of factorial, axial, and edge points making the Hoke designs suitable for a

cuboidal region of interest (Myers and Anderson-Cook, 2009).
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Roquemore (1976) presented a set of saturated or near-saturated second-order

designs for k = 3 to 6 factors which are rotatable or near-rotatable while achieving

the same degree of orthogonality as a CCD. The hybrid designs for k variables is

constructed by first augmenting a k − 1 variable central composite design with an

additional column for variable k. The design is then augmented with additional runs

for variable k at different levels to create desirable design properties.

In contrast to the CCD, which contain a 2k or 2k−p
V factorial design, Hartley (1959)

suggested replacing the factorial design with a special resolution III factorial design,

where two-factor interactions are not aliased with other two-factor interactions. As a

result, the number of design runs is decreased resulting in Small Composite Designs

(SCD). The SCD sacrifices good prediction variance properties with the reduction in

run size because main effects could be aliased with two-factor interactions. However,

the SCD design still allows for the estimation of all main-effect because the star

portion of the design provides additional information.

Unfortunately, while the 3k or 3k−p fractional factorial design, the Central Compos-

ite Design (CCD), Box-Behnken Design (BBD), and saturated/near-saturated Hoke,

Hybrid, and Small Composite Designs (SCD) are robust to the linear effect assump-

tion, these designs are not very run size efficient in terms of screening designs as they

are built to accommodate curvature for all factors under consideration.

As a result, recent literature has proposed employing a single experimental de-

sign capable of preforming both factor screening and response surface exploration

when conducting multiple experiments is unrealistic due to time, budget, or other

constraints. Initial attempts to use designs capable of performing both factor screen-

ing and response surface exploration with a single design relied upon the designs

projection capacity.

108



Cheng and Wu (2001), hereafter referred to as CW, introduced a two-stage anal-

ysis method where the key linkage between stages was the ability to project the

initial larger factor space onto a smaller factor space capable of fitting a second-order

model. Because a design can project onto many different combinations of factors,

a projection-efficiency criterion was developed to compare orthogonal designs based

upon (1) the number of eligible projected designs (designs which can fit a second-order

model) and (2) the estimation efficiency for eligible projected designs determined by

the ratio of each designs D− and G−efficiences (Cheng and Wu, 2001).

CW studied three orthogonal array (OA) designs which demonstrated desirable

projection properties. In contrast to 3k−p designs which have defining contrast sub-

groups to describe the design structure, the designs studied by CW required com-

puter search to classify the possible projected designs. Fortunately, while more com-

plex, the overall projection properties are better and generally required less runs.

When compared to CCDs, the designs studied exhibited good D−efficiences but poor

G−efficiences as the number of projected factors, increases.

Improving on the designs of CW, Xu et al. (2004), hereafter referred to by XCW,

proposed a combinatorial method for constructing new and efficient OA designs and

a design selection approach based upon a projection aberration criterion (Xu and Wu,

2001) for factor screening and the projection-efficiency criteria (Cheng and Wu, 2001)

for interaction detection. XCW’s three-step approach involves: (1) screening out poor

orthogonal arrays (OA) for factor screening using the generalized word-length pattern,

(2) applying the projection aberration criterion to select a best design from step 1,

and (3) determining the best level permutations of the design from step 2 to improve

design projection eligibility and estimation efficiency under the second-order model.

Ye et al. (2007), hereafter referred to as YTL, also examined 3-level 18-run and 27-

run orthogonal designs; however, in addition to considering the projection properties
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of designs, their design choices were based on both model estimation and model

discrimination criteria.

While previous work focused primarily on the designs projection capacity, Edwards

and Truong (2011) applied Jones and Nachtsheim (2011b) method for finding efficient

designs, deemed MA designs, with minimal aliasing between main effects and two-

factor interactions. Edwards and Truong (2011) compared the 27-run orthogonal

arrays of XCW and YTL with MA designs in terms of D-efficiency of projection and,

via a simulation study, the proportion of active factors declared significant (Power 1)

and the proportion of simulations in which only the true active factors are declared

significant (Power 2). Although ranked last in terms of D-efficiency, the MA designs

showed superior performance with their ability to detect active factors (Edwards and

Truong, 2011).

A common thread connecting all CW, XCW, YTL, and MA designs is the use of a

linear and quadratic main-effects only analysis for factor screening. Unfortunately, if

the strong effect heredity principle fails to hold important interactions can be missed

leading to a misspecified response surface model. However, if the concern exists where

a factor’s significance is only present in interactions with other factors, the authors

proposed either the Bayesian approaches of Box and Meyer (1993) or Chipman et al.

(1997) to account for significant factors outside of main effects when the strong effect

heredity principle fails to hold (Cheng and Wu, 2001). Unfortunately, these methods

are not readily available to practitioners in statistical software packages and are com-

putationally intensive procedures, thus likely making their use impractical (Edwards

and Truong, 2011). Another area of concern for the CW, XCW, YTL, and MA de-

signs is the projection of main and/or quadratic effects deemed significant during the

first stage analysis does not always yield a second-order design.
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Edwards and Mee (2011) introduced new spherical Fractional Box-Behnken de-

signs (FBBD) aimed at overcoming the projection deficiencies and main/quadratic

effect only analysis issues found in the CW/XCW/YTL/MA designs. The FBBD

provide the ability to explore interactions during the screening stage and to fit second-

order models via a backward elimination analysis strategy to each of the (k−1)-factor

projections.

The FBBDs are developed by taking subsets of the two-level fractional factorial

designs which compose a BBD (Edwards and Mee, 2011). The number of runs asso-

ciated with the FBBD vary depending upon the number of factors involved. While

FBBDs require more runs than CW/XCW/YTL/MA designs, their ease of construc-

tion and aliasing structure facilitate an analysis strategy which cannot be applied to

the CW/XCW/YTL/MA designs. Additionally, as k increases, the FBBD designs

require less runs than CCD/BBD.

Jones and Nachtsheim (2011a) introduced a class of three-level designs referred to

as “definitive screening designs” where main effects are not biased by second-order

effects and all quadratic effects are estimable. Consisting of 2k+1 runs for k factors,

these designs were constructing using the same Jones and Nachtsheim (2011b) method

used by Edwards and Truong (2011).

Dougherty et al. (2013a) describes a computer generated D−optimality design

augmentation technique which uses a k−factor Definitive Screening Design (DSD)

as a baseline fixed design and augments the design with k − 1 additional runs. The

DSD+ focus on improving the robustness of the DSD to the assumptions of heredity

and sparsity and significant second-order factor identification.
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5.4 Case Study

Arnold Engineering and Development Center (AEDC) provided Hill et al. (2011)

the legacy wind tunnel test data set for a 21% scale model of a system used to simulate

a supersonic, expendable, low-altitude, anti-ship missile. The data set consisted of

approximately 9000 design points within both the transonic and supersonic subspace

test regions. Six design variables (Angle of Attack, Roll Angle, Elevator Deflection,

Aileron Deflection, Rudder Deflection, and Mach Number) were used via an OFAT

testing methodology to aid in the characterization of the overall aerodynamic perfor-

mance of the missile in both test regions.

Hill et al. (2011) used the 9000+ design points and multiple linear regression to

develop “ground truth” response surface models of the missile system for the two

partitioned design regions. Equations 5.1 and 5.2 are the fitted regression models

representing this “ground truth” for the transonic and supersonic design regions,

respectively.

YT (GT ) = 0.7276645− 0.008916X1 + 0.0052574X2 − 0.020997X3 − 0.010612X4

− 0.035216X5 + 0.6167071X6 + 0.0104301X1X2 + 0.0877043X1X3

− 0.011519X1X4 − 0.018356X1X5 + 0.0176079X1X6 − 0.017622X2X4

+ 0.0199821X3X4 − 0.137442X4X5 − 0.007419X5X6 + 0.0036692X2
1

+ 0.1299117X2
3 + 0.027947X2

4 + 0.2434671X2
5 − 0.05499X2

6

− 0.370656X3
6 (5.1)
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YS(GT ) = −0.126954 + 0.0591609X1 + 0.006896X2 − 0.012877X3 − 0.006569X4

− 0.015172X5 − 0.075103X6 + 0.0065374X1X2 + 0.0561804X1X3

− 0.00621X1X4 − 0.012867X1X5 + 0.0200284X1X6 − 0.008101X2X4

+ 0.0159264X3X4 − 0.01437X3X5 − 0.0037195X3X6 + 0.009108X2
1

+ 0.0779585X2
3 + 0.0174788X2

4 + 0.1448347X2
5 − 0.004695X2

6

− 0.037185X3
1 (5.2)

The partitioning of the data into transonic and supersonic design regions enabled the

fitting of low-order polynomial models. As such, Hill et al. (2011) limited the models

to full quadratic models and pure cubic terms.

Hill et al. (2011) proceeded to generate response surface models for both the

transonic and supersonic design regions using approximately 900 experimental design

points of two alternative designs (Nested Face-Centered Design (NFCD) and an I-

optimal computer generated design) by sampling from the “ground truth” model

with an N(0, 0.0125) error added. They then compared the corresponding surfaces

using a Monte Carlo sampling methodology coupled with a statistical comparison to

determine the functional equivalency of the surfaces. Hill et al. (2011) demonstrated

the ability to generate equivalent response surfaces at a 90% reduction in experimental

effort.

Whereas Hill et al. (2011) were focused on the ability to generate equivalent re-

sponse surfaces with a fraction of the the original experimental runs, we are interested

in screening the nonlinear “ground truth” models for significant effects with a sin-

gle 18-run six-factor augmented Definitive Screening Design (DSD+) experiment, see

Table 56.
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Table 56. Six-Factor Augmented Definitive Screening Design (DSD+)

X1 X2 X3 X4 X5 X6

0 1 1 1 1 1
0 -1 -1 -1 -1 -1
1 0 -1 1 1 -1
-1 0 1 -1 -1 1
1 -1 0 -1 1 1
-1 1 0 1 -1 -1
1 1 -1 0 -1 1
-1 -1 1 0 1 -1
1 1 1 -1 0 -1
-1 -1 -1 1 0 1
1 -1 1 1 -1 0
-1 1 -1 -1 1 0
0 0 0 0 0 0
1 -1 1 1 1 1
1 -1 -1 -1 -1 -1
-1 1 1 1 1 1
-1 1 1 -1 -1 -1
-1 -1 -1 1 -1 -1

Table 56 was generated by adding k − 1 = 5 runs to a k = 6-factor DSD via a

computerized search algorithm. Instead of the information matrix being a main effects

only model, the information matrix contains the main effects and the five two-factor

interactions involving a particular factor, X1 in this instance. The DSD+ design

was constructed using a variant of the coordinate exchange algorithm of Meyer and

Nachtsheim (1995) to maximize the determinant of the updated information matrix.

Details on the computer search algorithm employed for the DSD and DSD+ can be

found in Jones and Nachtsheim (2011a) and Dougherty et al. (2013a), respectively.

To guard against local maxima, 10000 random starting designs, which included the

baseline six-factor DSD, were explored. As a result, twelve equivalent designs were

generated based upon both D-optimal and I-efficient criteria. For this case study the

first of the designs (Table 56) is used; however, in practice other criteria could be

used to further differentiate between the twelve designs.
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5.5 Discussion

Simulated responses where generated by sampling from both “ground truth” mod-

els with an N(0, 0.0125) error included for the design points specified by Table 56.

Five sets of data were simulated for each design region (transonic and supersonic).

Second-order empirical models are then constructed through forward stepwise regres-

sion. With a p-value of 0.1 to enter, effects are added into the second-order model

while forcing a strong heredity model. As such, when either two-factor interactions

or pure-quadratic effects are included in the model, the lower order terms must also

be included.

Since the “ground truth” models contain all six design variables at various signal

levels, screening design success is based upon the ability to determine active effects

based upon the signal-to-noise ratio. For instance with a 0.0125 noise factor, factors

X2 andX6 have 0.42 and 49.34 signal to noise ratios, respectively, within the transonic

region. As such, failing to identify X6 vice X2 would be a more egregious error. Table

57 displays the average percentage (across five replications) of effects identified at

four different signal-to-noise ratios.

Table 57. Second Order Screening Design Results for Case Study : 5 Replication
Average

Scenario
Transonic Supersonic

δ/ε > 0 > 1 > 2 > 3 > 0 > 1 > 2 > 3
ME 90% 100% 100% 100% 90% 100% 100% 100%
2FI 44% 57% 50% 50% 27% 36% 100% 100%

ε ∼ N(0, 0.0125) - with X1 36% 40% 0% 0% 36% 60% 100% 100%
PQ 32% 40% 40% 47% 48% 67% 100% 100%

Total 55% 62% 58% 57% 51% 65% 100% 100%

Note: Identified percentages correspond to percentage of Main Effects (ME), Two-
Factor Interaction (2FI) effects, and Pure Quadratic (PQ) effects.

For a signal-to-noise (δ/ε) ratio ≥ 0, the screening design is trying to identify 20

effects as being significant within both Equations 5.1 and 5.2, excluding only the cubic
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term. In contrast, for a signal-to-noise (δ/ε) ratio ≥ 2, the screening design is trying

to identify 8 and 5 effects within both Equations 5.1 and 5.2, respectively. Specifically

for Equation 5.2, the screening design is looking to identifyX1, X6, X1X3, X
2
3 and X2

5 .

Overall, with only 18 design runs, the DSD+ was able to identify over half of

the effects for both design regions. As the signal-to-noise ratio increases, so does the

percentage of effects identified, particularly with regards to the supersonic region.

Thereby signifying the design is identifying the larger more significant terms for the

response surface. Most importantly the design is nearly perfect, even at lower signal-

to-noise ratios, at identifying main effect (ME) factors.

The DSD+ struggled at identifying active second-order effects, regardless of the

signal-to-noise ratio, within the transonic design region and at the lowest signal-

to-noise ratio for the supersonic region. This performance is not surprising giving

the large number of “active” effects at smaller signal-to-noise ratios and the level of

confounding between pure quadratic and two-factor effects. Screening designs stem

from the Pareto principle which states that most of the variability in a system or

process output is due to a small number of inputs. This is not the case for the

transonic region where 20 out of 28 effects for a full second-order empirical model

using 6 factors are deemed active or significant.

Additionally, the DSD+ analysis methodology does not allow for the inclusion or

estimation of cubic terms. While both the transonic and supersonic “ground truth”

models contain only a single cubic term, the cubic term in the transonic model is ten

times larger and far more significant than the cubic term in the supersonic model. As

such, the impact of excluding cubic terms in the empirical model causes biasing in

the remaining model terms because the cubic terms effect will be attributed to either

model error or other effects, even potentially insignificant effects.
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5.6 Conclusions

In budget limitations, testers need to carefully control run size. Hill et al. (2011)

succeeded in generating equivalent response surface models for both the transonic and

supersonic design regions at a 90% reduction in experimental effort when compared

to traditional wind tunnel testing methodology. But neither Hill et al. (2011) nor the

original wind tunnel testers were restricted in the number of available experimental

runs. While screening designs are never perfect, they offer a mechanism to deter-

mine those factors likely most active in defining system response when resources are

restricted. At a 99.8% and 98% reduction in experimental effort when compared to

traditional wind tunnel testing and Hill et al. (2011), respectively, the DSD+ was

able to identify the majority of the significant second-order effects and all but the

smallest main effect, particularly for the supersonic test region.

Systems and processes continue to become more complex, as a result the number

of factors being considered on the system or process response grows. In a time when

resources are shrinking, the increase in factors of interest requires additional exper-

imental runs if more efficient design methodologies are not employed. This insight

leads to customization of the full design in order to yield better run efficiencies; how-

ever, there is always a chance of misleading results. Such is the case with most any

statistical analysis. Thus, there will always be the need for system-specific expertise

as a complement to the system experimental data analysis. The analysis of screen-

ing designs may not be an easy task. Statistical proficiency and capable analytical

packages will be required.
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VI. Summary and Recommendations

6.1 Summary of Work

Screening designs are a category of experimental designs, usually performed during

the early stages of a process or system study, used to determine which of the many

factors (if any) have a significant effect on the system or process. Selecting which

screening design to use from the multitude of available designs is not always straight

forward. Assumptions related to the principles of sparsity and heredity and the form

of the empirical model used to represent the process or system response should help

determine selection of an appropriate screening design. Factors such as whether or

not follow-up experiments are available and the ease of which statistical analysis of

data can be done can also effect design selection. As a result, with the help of subject

matter experts, research and development of specialized computer generated designs

which exhibit desirable design parameters has increased.

Second-order screening designs are a relatively new focus in statistical research and

largely unknown to the defense test community. Second-order screening designs are

single experimental designs capable of preforming both factor screening and response

surface estimation when conducting multiple experiments is unrealistic due to time,

budget, or other constraints. This dissertation explored the robustness of leading

designs, developed an augmentation strategy to improve one of the leading designs,

and provided a case study application of such designs. Chapter II contains a detailed

literature review of screening and response surface designs, partitioned by sequential

and single phase methods for fitting first order and second order response surfaces.

Chapters III, IV, and V are self-contained research articles on second-order screening

designs. Each contains a literature review of the research relevant to that chapter.
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Two important principles used in developing successful screening designs are spar-

sity and heredity. However, the degree to which factor sparsity holds as the number

of factors grows has resulted in a debate between effect sparsity and factor sparsity.

Heredity, either strong or weak, is the second screening principle commonly used

when considering model selection. Strong heredity implies that if a model includes

a two-factor interaction, then its constituent main effects are included in the model.

Conversely, weak heredity requires only one of the two constituent main effects be

included in the model. To date, evaluation of screening design performance has as-

sumed both factor sparsity and strong effect heredity. Chapter III formally examines

the robustness of the two arguably best second-order screening designs with respect

to the assumptions of both sparsity (factor or effect) and heredity (strong or weak).

Whenever a screening design is employed, analytical tradeoffs must be accepted.

Definitive Screening Designs are run size efficient when strong heredity and factor

sparsity are present and when few second-order effects are active. Chapter IV de-

scribes a computer generated D−optimality design augmentation technique which

uses a k−factor Definitive Screening Design (DSD) as a baseline fixed design and

augments the design with k − 1 additional runs. In a simulation study, the proposed

augmented Definitive Screening Design (DSD+) was able to increase the robustness

of the original DSD to the principles of heredity and sparsity while also increasing

the detection rate of two-order effects when both two-factor interactions and pure-

quadratic effects are active.

Chapter V presents the use of design of experiments and response surface designs

in the area of second-order screening designs, particularly as applied to defense testing,

through demonstrating the viable use of second-order screening designs in a wind

tunnel case study.
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6.2 Recommendations for Future Research

This work focused on the robustness and augmentation of existing second-order

screening designs. Evaluation of design performance was based upon the original

design authors’ recommended analysis methodology. It would be interesting to study

alternative analysis methodology to see if the designs ability to identify active effects

can be attributed to design structure or analysis methodologies.

Supersaturated designs can be used in large screening experiments when the num-

ber of factors exceeds the number of available run. While research on improving

supersaturated designs construction and analysis continues, unfortunately, very little

work is being done on constructing supersaturated designs which are capable of re-

sponse surface exploration. It would be interesting to study construction of designs

which are supersaturated in terms of total number of effects vice number of factors.
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Recent literature has proposed employing a single experimental design capable of preforming both factor
screening and response surface estimation when conducting sequential experiments is unrealistic due to time, budget, or
other constraints. Military systems, particularly aerodynamic systems, are complex. It is not unusual for these systems
to exhibit nonlinear response behavior. Developmental testing may be tasked to characterize the nonlinear behavior of
such systems while being restricted in how much testing can be accomplished. Second-order screening designs provide a
means in a single design experiment to effectively focus test resources onto those factors driving system performance.
Sponsored by the Office of the Secretary of Defense (ODS) in support of the Science of Test initiative, this research
characterizes and adds to the area of second-order screening designs, particularly as applied to defense testing. Existing
design methods are empirically tested and examined for robustness. The leading design method, a method that is very
run efficient, is extended to overcome limitations when screening for non-linear effects. A case study and screening design
guidance for defense testers is also provided.
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